Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of ancell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7163/ad89f0DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
cells infected
8
identifying viral
4
viral infections
4
infections analysis
4
analysis head
4
head space
4
space volatile
4
compounds volatile
4

Similar Publications

Lipidomics and Flavouromics assessment of the effects of enzyme modification on butter composition.

Food Chem

December 2024

College of Food Science and Engineering, Wuhan Polytechnic University, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430048, China.. Electronic address:

Enzyme-modified butter (EMB) is well-known for its rich flavour, which is primarily defined by the process of enzymatic hydrolysis. This study employed lipidomics and flavouromics to assess the differences between EMBs and to uncover the intrinsic links between volatile organic compounds (VOCs) and lipids. Approximately 273 lipids and 82 VOCs were identified in butter.

View Article and Find Full Text PDF

Environmental risk assessments of very hydrophobic organic compounds (VHOCs) in soils are often difficult because multiple processes (e.g., sorption, volatilization, biodegradation) can complicate the interpretation of results.

View Article and Find Full Text PDF

Balanced plant nutrition and optimal micro-climate are critical for achieving higher production sustainably. Substituting mineral fertilizers with organic amendments under water-conserving strategies like mulch can enhance the quality and yield and improve soil health. Therefore, a two-year study was conducted to examine the synergistic effects of mulch and reducing inorganic fertilizers and partially substituting organic amendments on essential oil (EO) yield and its composition, and soil properties in Salvia sclarea, an industrially important crop.

View Article and Find Full Text PDF

E-Cigarette Effects on Oral Health: A Molecular Perspective.

Food Chem Toxicol

December 2024

Departments of Otolaryngology-Head and Neck Surgery; Departments of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City OK 73104, USA; Departments of TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. Electronic address:

Electronic cigarettes (e-cigarettes) have emerged as a potential alternative to traditional smoking and may aid in tobacco harm reduction and smoking cessation. E-cigarette use has notably increased, especially among young non-tobacco users, raising concerns due to the unknown long-term health effects. The oral cavity is the first and one of the most crucial anatomical sites for the deposition of e-cigarette aerosols.

View Article and Find Full Text PDF

Exhaled breath metabolites reveal postmenopausal gut-bone cross-talk and non-invasive markers for osteoporosis.

Commun Med (Lond)

December 2024

Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.

Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.

Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!