Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Orthogonal separations of data from high-resolution mass spectrometry can provide insight into sample composition and address challenges of complete annotation of molecules in untargeted metabolomics. "Molecular networks" (MNs), as used in the Global Natural Products Social Molecular Networking platform, are a prominent strategy for exploring and visualizing molecular relationships and improving annotation. MNs are mathematical graphs showing the relationships between measured multidimensional data features. MNs also show promise for using network science algorithms to automatically identify targets for annotation candidates and to dereplicate features associated with a single molecular identity. This paper introduces "molecular hypernetworks" (MHNs) as more complex MN models able to natively represent multiway relationships among observations. Compared to MNs, MHNs can more parsimoniously represent the inherent complexity present among groups of observations, initially supporting improved exploratory data analysis and visualization. MHNs also promise to increase confidence in annotation propagation, for both human and analytical processing. We first illustrate MHNs with simple examples, and build them from liquid chromatography- and ion mobility spectrometry-separated MS data. We then describe a method to construct MHNs directly from existing MNs as their "clique reconstructions", demonstrating their utility by comparing examples of previously published graph-based MNs to their respective MHNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.3c00634 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!