A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep-AutoMO: Deep automated multiobjective neural network for trustworthy lesion malignancy diagnosis in the early stage via digital breast tomosynthesis. | LitMetric

Deep-AutoMO: Deep automated multiobjective neural network for trustworthy lesion malignancy diagnosis in the early stage via digital breast tomosynthesis.

Comput Biol Med

The Reliable Intelligence and Medical Innovation Laboratory (RIMI Lab), Department of Biostatistics & Data Science, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, 66160, KS, USA. Electronic address:

Published: December 2024

Breast cancer is the most prevalent cancer in women, and early diagnosis of malignant lesions is crucial for developing treatment plans. Digital breast tomosynthesis (DBT) has emerged as a valuable tool for early breast cancer detection, as it can identify more lesions and improve the early detection rate. Deep learning has shown great potential in medical image-based cancer diagnosis, including DBT. However, deploying these models in clinical practice may be challenging due to concerns about reliability and robustness. In this study, we developed a novel deep automated multiobjective neural network (Deep-AutoMO) to build a trustworthy model and achieve balance, safety and robustness in a unified way. During the training stage, we introduced a multiobjective immune neural architecture search (MINAS) that simultaneously considers sensitivity and specificity as objective functions, aiming to strike a balance between the two. Each neural network in Deep-AutoMO comprises a combination of a ResNet block, a DenseNet block and a pooling layer. We employ Bayesian optimization to optimize the hyperparameters in the MINAS, enhancing the efficiency of the model training process. In the testing stage, evidential reasoning based on entropy (ERE) approach is proposed to build a safe and robust model. The experimental study on DBT images demonstrated that Deep-AutoMO achieves promising performance with a well-balanced trade-off between sensitivity and specificity, outperforming currently available methods. Moreover, the model's safety is ensured through uncertainty estimation, and its robustness is improved, making it a trustworthy tool for breast cancer diagnosis in clinical settings. We have shared the code on GitHub for other researchers to use. The code can be found at https://github.com/ChaoyangZhang-XJTU/Deep-AutoMO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109299DOI Listing

Publication Analysis

Top Keywords

neural network
12
breast cancer
12
deep automated
8
automated multiobjective
8
multiobjective neural
8
digital breast
8
breast tomosynthesis
8
cancer diagnosis
8
network deep-automo
8
sensitivity specificity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!