Advances in mesenchymal stem cell-centered stem cell therapy in the treatment of hypoxic-ischemic injury.

Int Immunopharmacol

Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:

Published: December 2024

Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction for which no particularly effective treatment is available. Stem cells possess multi-directional differentiation potential and can secrete a variety of cytokines. They not only have the ability to replace tissue and repair lesions but also improve neurological damage caused by HIBD through paracrine mechanisms, including anti-apoptosis, reduction of inflammation, and promotion of endogenous repair. Recently, as research on stem cells, particularly mesenchymal stem cells, has deepened, the application of stem cells in treating HIBD has become a prominent research topic, yielding fruitful results, particularly regarding the neuroprotective effects and mechanisms of the stem cell paracrine pathway. With advances in stem cell injection, distribution, and biomaterial incorporation, applications of stem cells have become more widespread and comprehensive. This review summarizes and discusses the research progress on stem cells in HIBD treatment to provide theoretical support for HIBD treatment and enhance the feasibility of clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113430DOI Listing

Publication Analysis

Top Keywords

stem cells
24
stem cell
12
stem
10
mesenchymal stem
8
hibd treatment
8
cells
6
hibd
5
advances mesenchymal
4
stem cell-centered
4
cell-centered stem
4

Similar Publications

Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.

View Article and Find Full Text PDF

Natural bone is a self-regenerating nanocomposite made of proteins and minerals. Such self-regenerative capacity can be negatively affected by certain diseases involving the bone or its surrounding tissues. Our study assesses the ability of bone grafting material to regenerate bone in animals who have artificially created critical-sized defects.

View Article and Find Full Text PDF

Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!