Geranyl esters (GEs) are valuable monoterpene esters derived from the esterification of geraniol and various carboxylic acids with a range of unique aromas and properties, making them valuable in perfumery, pharmaceutical, and cosmetic applications. Lipase-mediated esterification is considered to be a sustainable process but is challenged by the lack of a compatible catalytic method in conjunction with a customized microbial biosynthesis of geraniol. In this study, we developed an integrated process to convert glycerol and various carboxylates into GEs. The process includes microbial biosynthesis of geraniol using metabolically engineered and enzymatic conversion of geraniol into GEs in a fermentation medium-organic biphasic system using an immobilized lipase. The enzymatic step for esterifying the target carboxylates with geraniol achieved >90% conversion under the optimized condition. Coupled with the geraniol from microbial fermentation, 0.59 g/L geranyl butyrate and 1.04 g/L geranyl hexanoate were produced subsequently, demonstrating the feasibility of converting renewable source into monoterpene esters through this integrated process, which bypassed feeding extra geraniol in the conventional lipase-mediated GE synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c07847 | DOI Listing |
Front Endocrinol (Lausanne)
March 2025
Department of Endocrinology & Metabolism, Shenzhen University General Hospital, Shenzhen, China.
Background: The gut microbiota plays a pivotal role in various metabolic disorders. Orlistat has shown beneficial effects on weight loss and metabolism, but its direct impact on the gut microbiota has not been extensively reported. Thus, this study aimed to explore the effects of orlistat on the gut microbiota in mice with high-fat diet-induced obesity.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2025
Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China.
Introduction: The increasing resistance of () to conventional antifungal drugs poses a great challenge to the clinical treatment of infections caused by this yeast. Drug combinations are a potential therapeutic approach to overcome the drug- resistance of . This study explored the synergistic effects of amantadine hydrochloride (AMH) combined with azole antifungal drugs against drug-resistant and .
View Article and Find Full Text PDFImmune Netw
February 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
Aromatic amino acid (AAA) metabolites, derived from tryptophan, phenylalanine, and tyrosine through coordinated host and microbial metabolism, have emerged as critical modulators of immune function. We examine the complex journey of AAAs from dietary intake through intestinal absorption and metabolic transformation, highlighting the crucial role of host-microbe metabolic networks in generating diverse immunomodulatory compounds. This review provides a unique integrative perspective by mapping the molecular mechanisms through which these metabolites orchestrate immune responses.
View Article and Find Full Text PDFFront Microbiol
February 2025
Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany.
The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites.
View Article and Find Full Text PDFFront Microbiol
February 2025
Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
The gut microbiota plays a crucial role in the growth performance, health status, and welfare of pigs. Breast milk is a key factor in the colonization of gut microbiota and the overall health of newborn piglets. With advancements in breeding technology, formula milk has been widely adopted as a substitute for breast milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!