Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Gastrointestinal stromal tumors (GISTs) present a complex clinical landscape, where precise preoperative risk assessment plays a pivotal role in guiding therapeutic decisions. Conventional methods for evaluating mitotic count, such as biopsy-based assessments, encounter challenges stemming from tumor heterogeneity and sampling biases, thereby underscoring the urgent need for innovative approaches to enhance prognostic accuracy.
Objective: The primary objective of this study was to develop a robust and reliable computational tool, PROMETheus (Preoperative Mitosis Estimator Tool), aimed at refining patient stratification through the precise estimation of mitotic count in GISTs.
Methods: Using advanced Bayesian network methodologies, we constructed a directed acyclic graph (DAG) integrating pertinent clinicopathological variables essential for accurate mitotic count prediction on the surgical specimen. Key parameters identified and incorporated into the model encompassed tumor size, location, mitotic count from biopsy specimens, surface area evaluated during biopsy, and tumor response to therapy, when applicable. Rigorous testing procedures, including prior predictive simulations, validation utilizing synthetic data sets were employed. Finally, the model was trained on a comprehensive cohort of real-world GIST cases (n=80), drawn from the repository of the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, with a total of 160 cases analyzed.
Results: Our computational model exhibited excellent diagnostic performance on synthetic data. Different model architecture were selected based on lower deviance and robust out-of-sample predictive capabilities. Posterior predictive checks (retrodiction) further corroborated the model's accuracy. Subsequently, PROMETheus was developed. This is an intuitive tool that dynamically computes predicted mitotic count and risk assessment on surgical specimens based on tumor-specific attributes, including size, location, surface area, and biopsy-derived mitotic count, using posterior probabilities derived from the model.
Conclusions: The deployment of PROMETheus represents a potential advancement in preoperative risk stratification for GISTs, offering clinicians a precise and reliable means to anticipate mitotic counts on surgical specimens and a solid base to stratify patients for clinical studies. By facilitating tailored therapeutic strategies, this innovative tool is poised to revolutionize clinical decision-making paradigms, ultimately translating into improved patient outcomes and enhanced prognostic precision in the management of GISTs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538881 | PMC |
http://dx.doi.org/10.2196/50023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!