We report the solvent-evaporation and ionic cross-linking mediated self-assembly of the shell cross-linked micelles of the amphiphilic triblock copolymer containing middle poly(methyl methacrylate) block (hydrophobic) and poly(2-dimethylamino)ethyl methacrylate end blocks (hydrophilic) on the membrane substrate to create molecular selective channels. The formation of selective channels on the substrate is attributed to the local increase of micelle concentration upon solvent evaporation, which leads to the core-core hydrophobic interaction. The post-ionic cross-linking of the shell part further reduces the intermicelle distance, thereby creating interstices for selective separation. The TUF-1:1 membrane prepared by the self-assembly of the cross-linked micelles (triblock copolymer:halide-terminated PEG-based = 1:1 w w) and by the post-ionic cross-linking shows molecular weight cutoff of 3000 g mol and pure water permeance of 52 L m h bar. The membrane shows 99.5-99.9% rejection of Congo red and Direct red-80 in the presence or absence of salts and NaSO to dye separation factor of about 900. The added functionality (PEG) in the micelle structure provides good fouling-resistant properties toward dye and bovine serum albumin. This work provides the membrane formation mechanism and the advantages of the membrane for fractionation and resource recovery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14085DOI Listing

Publication Analysis

Top Keywords

selective channels
12
molecular selective
8
self-assembly cross-linked
8
selective separation
8
cross-linked micelles
8
post-ionic cross-linking
8
selective
5
membrane
5
low fouling
4
fouling molecular
4

Similar Publications

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

Background Cancer is a major cause of morbidity and mortality worldwide. It is anticipated that the number of new cases in Saudi Arabia will increase yearly as a result of significant changes in lifestyle and population development. There is little to no information or studies concerning cancer awareness or knowledge among the residents of Bisha Province.

View Article and Find Full Text PDF

Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices . Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels , has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.

View Article and Find Full Text PDF

Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells.

ACS Nano

January 2025

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.

View Article and Find Full Text PDF

Uncovering potential causal genes for undiagnosed congenital anomalies using an in-house pipeline for trio-based whole-genome sequencing.

Hum Genomics

January 2025

Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.

Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!