Degradation Effects in LiTiO-Based Cells─Learning from Electrode Potential Profiles.

ACS Appl Mater Interfaces

MEET Battery Research Center, University of Münster, Corrensstr. 46, 48149 Münster, Germany.

Published: November 2024

LiTiO (LTO) is a promising negative electrode active material for high-power applications of lithium-ion batteries due to its structural and dimensional stability, high safety properties, and rate capability. However, there are still challenges regarding the cyclic aging behavior of LTO-based cells, especially when it comes to the origin of gas evolution that needs to be resolved in order to enable an optimized cell design and prolonged cycle life. Using a three-electrode setup provides operando insights into the cyclic aging behavior of LiNiCoMnO (NCM111)||LTO cells. The results demonstrated that an initial slight increase in specific capacity followed by an intense decrease after 40 cycles could be attributed to a relative shift of the individual electrode potential profiles caused by loss of lithium inventory and associated electrolyte consumption during cyclic aging. By using higher formation temperatures, the capacity decrease, an associated loss of lithium inventory, and continuous electrolyte consumption were successfully suppressed. Moreover, the results suggested that gas evolution in LiTiO-based cells majorly originates from the reductive decomposition of moisture residues and the electrolyte at the LiTiO electrode surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c12988DOI Listing

Publication Analysis

Top Keywords

cyclic aging
12
electrode potential
8
potential profiles
8
aging behavior
8
gas evolution
8
loss lithium
8
lithium inventory
8
electrolyte consumption
8
degradation effects
4
effects litio-based
4

Similar Publications

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

In accordance with German guideline ZTV-ING Part 4, full-locked coil ropes are provided with a three-layer corrosion protection coating based on epoxy resin and polyurethane, which must be renewed regularly. An alternative method is to use a coating of high-density polyethylene (HDPE), which is extruded onto the rope. In this article, the mechanical behavior of the thermoplastic material is studied, taking into account various accelerated aging processes, which are derived from the climatic boundary conditions of a real bridge structure and implemented in tests.

View Article and Find Full Text PDF

Wood-plastic composites (WPC) combine the properties of polymers and wood, providing an attractive alternative to traditional materials, particularly for terrace flooring. When exposed to various environmental conditions, WPCs are affected by factors, such as water and ultraviolet (UV) radiation. Although most test methods for assessing the durability of these products have focused on changes in mechanical properties and linear dimensions, out-of-plane deformations (concavity and convexity) are often overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!