Accurate segmentation of 3D point clouds in indoor scenes remains a challenging task, often hindered by the labor-intensive nature of data annotation. While weakly supervised learning approaches have shown promise in leveraging partial annotations, they frequently struggle with imbalanced performance between foreground and background elements due to the complex structures and proximity of objects in indoor environments. To address this issue, we propose a novel foreground-aware label enhancement method utilizing visual boundary priors. Our approach projects 3D point clouds onto 2D planes and applies 2D image segmentation to generate pseudo-labels for foreground objects. These labels are subsequently back-projected into 3D space and used to train an initial segmentation model. We further refine this process by incorporating prior knowledge from projected images to filter the predicted labels, followed by model retraining. We introduce this technique as the Foreground Boundary Prior (FBP), a versatile, plug-and-play module designed to enhance various weakly supervised point cloud segmentation methods. We demonstrate the efficacy of our approach on the widely-used 2D-3D-Semantic dataset, employing both random-sample and bounding-box based weak labeling strategies. Our experimental results show significant improvements in segmentation performance across different architectural backbones, highlighting the method's effectiveness and portability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2024.3484654 | DOI Listing |
Med Image Anal
January 2025
Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:
Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.
View Article and Find Full Text PDFComput Biol Med
January 2025
Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan. Electronic address:
Background: Hip fractures are a significant public health issue, particularly among the elderly population. Pelvic radiographs (PXRs) play a crucial role in diagnosing hip fractures and are commonly used for their evaluation. Previous research has demonstrated promising performance in classification models for hip fracture detection.
View Article and Find Full Text PDFInt J Hematol
January 2025
Associated Department With Mie Graduate School of Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan.
This study discusses disseminated intravascular coagulation (DIC) associated with solid cancers and various vascular abnormalities, both of which generally exhibit chronic DIC patterns. Solid cancers are among the most significant underlying diseases that induce DIC. However, the severity, bleeding tendency, and progression of DIC vary considerably depending on the type and stage of the cancer, making generalization difficult.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Background And Aims: The levels of M2 macrophages are significantly associated with the prognosis of hepatocellular carcinoma (HCC), however, current detection methods in clinical settings remain challenging. Our study aims to develop a weakly supervised artificial intelligence model using globally labeled histological images, to predict M2 macrophage levels and forecast the prognosis of HCC patients by integrating clinical features.
Methods: CIBERSORTx was used to calculate M2 macrophage abundance.
Cancer Lett
January 2025
Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China; The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, PR China. Electronic address:
Preoperative detection of muscle-invasive bladder cancer (MIBC) remains a great challenge in practice. We aimed to develop and validate a deep Vesical Imaging Network (ViNet) model for the detection of MIBC using high-resolution Tweighted MR imaging (hrTWI) in a multicenter cohort. ViNet was designed using a modified 3D ResNet, in which, the encoder layers were pretrained using a self-supervised foundation model on over 40,000 cross-modal imaging datasets for transfer learning, and the classification modules were weakly supervised by an experiential knowledge-domain mask indicated by a nnUNet segmentation model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!