A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulation of 69 microbial communities indicates sequencing depth and false positives are major drivers of bias in prokaryotic metagenome-assembled genome recovery. | LitMetric

AI Article Synopsis

  • The study investigates how factors like species abundance, sequencing depth, and taxonomic relationships affect the recovery of metagenome-assembled genomes (MAGs) in microbial communities.
  • Different recovery pipelines were tested, revealing that the DT pipeline offered the most accurate results, whereas the 8K pipeline produced the most MAGs but with lower accuracy.
  • Findings indicate that simply having more MAGs doesn't reflect true community composition, emphasizing the importance of sequencing depth and caution in interpreting MAG recovery data for biological conclusions.

Article Abstract

We hypothesize that sample species abundance, sequencing depth, and taxonomic relatedness influence the recovery of metagenome-assembled genomes (MAGs). To test this hypothesis, we assessed MAG recovery in three in silico microbial communities composed of 42 species with the same richness but different sample species abundance, sequencing depth, and taxonomic distribution profiles using three different pipelines for MAG recovery. The pipeline developed by Parks and colleagues (8K) generated the highest number of MAGs and the lowest number of true positives per community profile. The pipeline by Karst and colleagues (DT) showed the most accurate results (~ 92%), outperforming the 8K and Multi-Metagenome pipeline (MM) developed by Albertsen and collaborators. Sequencing depth influenced the accurate recovery of genomes when using the 8K and MM, even with contrasting patterns: the MM pipeline recovered more MAGs found in the original communities when employing sequencing depths up to 60 million reads, while the 8K recovered more true positives in communities sequenced above 60 million reads. DT showed the best species recovery from the same genus, even though close-related species have a low recovery rate in all pipelines. Our results highlight that more bins do not translate to the actual community composition and that sequencing depth plays a role in MAG recovery and increased community resolution. Even low MAG recovery error rates can significantly impact biological inferences. Our data indicates that the scientific community should curate their findings from MAG recovery, especially when asserting novel species or metabolic traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530072PMC
http://dx.doi.org/10.1371/journal.pcbi.1012530DOI Listing

Publication Analysis

Top Keywords

sequencing depth
20
mag recovery
20
recovery
10
microbial communities
8
sample species
8
species abundance
8
abundance sequencing
8
depth taxonomic
8
pipeline developed
8
true positives
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!