Cytochrome P450 monooxygenases of the CYP79 family catalyze conversion of specific amino acids into oximes feeding into a variety of metabolic plant pathways. Here we present an extensive phylogenetic tree of the CYP79 family built on carefully curated sequences collected across the entire plant kingdom. Based on a monophyletic origin of the P450s, a set of evolutionarily distinct branches was identified. Founded on the functionally characterized CYP79 sequences, sequence features of the individual substrate recognition sites (SRSs) were analyzed. Co-evolving amino acid residues were identified using co-evolutionary sequence analysis. SRS4 possesses a specific sequence pattern when tyrosine is a substrate. Except for the CYP79Cs and CYP79Fs, substrate preferences toward specific amino acids could not be assigned to specific subfamilies. The highly diversified CYP79 tree, reflecting recurrent independent evolution of CYP79s, may relate to the different roles of oximes in different plant species. The sequence differences across individual CYP79 subfamilies may facilitate the in vivo orchestration of channeled metabolic pathways based on altered surface charge domains of the CYP79 protein. Alternatively, they may serve to optimize dynamic interactions with oxime metabolizing enzymes to enable optimal ecological interactions. The outlined detailed curation of the CYP79 sequences used for building the phylogenetic tree made it appropriate to make a conservative phylogenetic tree-based revision of the naming of the sequences within this highly complex cytochrome P450 family. The same approach may be used in other complex P450 subfamilies. The detailed phylogeny of the CYP79 family will enable further exploration of the evolution of function in these enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.17044 | DOI Listing |
Physiol Plant
January 2025
Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).
View Article and Find Full Text PDFMol Plant
December 2024
Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A.
View Article and Find Full Text PDFPlant J
November 2024
Plant Biochemistry Laboratory, PLEN, University of Copenhagen, Copenhagen, Denmark.
Cytochrome P450 monooxygenases of the CYP79 family catalyze conversion of specific amino acids into oximes feeding into a variety of metabolic plant pathways. Here we present an extensive phylogenetic tree of the CYP79 family built on carefully curated sequences collected across the entire plant kingdom. Based on a monophyletic origin of the P450s, a set of evolutionarily distinct branches was identified.
View Article and Find Full Text PDFMicrob Cell Fact
October 2023
Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
Production of plant secondary metabolites in engineered microorganisms provides a scalable and sustainable alternative to their sourcing from nature or through chemical synthesis. However, the biosynthesis of many valuable plant-derived products relies on cytochromes P450 - enzymes notoriously difficult to express in microbes. To improve their expression in Escherichia coli, an arsenal of engineering strategies was developed, often paired with an extensive screening of enzyme variants.
View Article and Find Full Text PDFNew Phytol
February 2023
Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!