Asbestos is a group of naturally occurring fibrous minerals that were commonly used in the construction of cement pipes for drinking water distribution systems. These pipes deteriorate and can release asbestos fibers into drinking water, raising concerns about potential risk to human health. The objective of this work was to synthesize human, animal, and evidence on potential health risks due to ingested asbestos in drinking water and evaluate the weight of evidence (WoE) of human health risk. A systematic review of epidemiological evidence was conducted, along with critical review of animal and evidence, followed by WoE evaluation that integrated human, animal, and evidence. The systematic review included 17 human studies with health outcomes mostly related to various cancer sites, with the majority focusing on the gastrointestinal system. The WoE evaluation resulted in very low levels of confidence or insufficient evidence of a health effect for cancers in 15 organ systems and for three non-cancer endpoints. While eight studies reported possible associations with stomach cancer in males, few high-quality studies were available to verify a causal relationship. Based on high-quality animal studies, an increased risk for cancer or non-cancer endpoints was not supported, aligning with findings from human studies. Overall, the currently available body of evidence is insufficient to establish a clear link between asbestos contamination in drinking water and adverse health effects. Due to the lack of both high-quality epidemiological studies and a validated kinetic model for ingested asbestos, additional research on this association is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408444.2024.2399840DOI Listing

Publication Analysis

Top Keywords

drinking water
20
animal evidence
12
review epidemiological
8
studies health
8
health effects
8
asbestos drinking
8
human health
8
human animal
8
ingested asbestos
8
evidence woe
8

Similar Publications

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

Optimal allocation of technical reclamation and ecological restoration for a cost-effective solution in Pingshuo Opencast Coal Mine area of China.

J Environ Manage

January 2025

School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.

Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.

View Article and Find Full Text PDF

The microbial pollution status of river surface water is important to ensure a river-based quality drinking water supply for the public. The present study aimed to investigate bacterial contamination status in the upper Mahaweli River, the main drinking water supplier to the hill country of Sri Lanka. Both the raw surface water and treated water, taken at 14 drinking water treatment plants (DWTPs) along the river segment of 60 km between Kotmale and Victoria reservoirs, were tested for total bacterial counts (TBC), total coliform counts (TCC) and faecal coliform counts (FCC).

View Article and Find Full Text PDF

Drinking water flavor, a critical water quality metric, exhibits substantial regional variations across China, influenced by local geology and chemistry. Despite growing consumer concerns about water flavor, a spatial assessment of the determinants of water flavor in China has been notably lacking. This study bridges this gap by conducting a spatially comprehensive analysis of 78 tap water samples throughout China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!