Haemoglobin is a key molecule for oxygen transport in vertebrates. It exhibits remarkable gene diversity in teleost fishes, reflecting adaptation to various aquatic environments. In this study, we present the dynamic evolution of haemoglobin subunit genes based on a comparison of high-quality genome assemblies of 24 vertebrate species, including 17 teleosts (of which six are cichlids). Our findings indicate that teleost genomes contain a range of haemoglobin genes, from as few as five in fugu to as many as 43 in salmon, with the latter being the largest repertoire found in vertebrates. We find evidence that the teleost ancestor had at least four Hbα and three or four Hbβ subunit genes, and that the current gene diversity emerged during teleost radiation, driven primarily by (tandem) gene duplications, genome compaction, and rearrangement dynamics. We provide insights into the genomic organisation of haemoglobin clusters in different teleost species. We further show that the evolution of paralogous rhbdf1 genes flanking both teleost clusters (LA and MN) supports the hypothesis for the origin of the LA cluster by rearrangement within teleosts, rather than by the teleost specific whole-genome duplication. We specifically focus on cichlid fishes, where adaptation to low oxygen environment plays role in species diversification. Our analysis of six cichlid genomes, including Pungu maclareni from the Barombi Mbo crater lake, for which we sequenced a representative genome, reveals 18-32 copies of the Hb genes, and elevated rates of non-synonymous substitutions compared to other teleosts. Overall, this work facilitates a deeper understanding of how haemoglobin genes contribute to the adaptive potential of teleosts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17559DOI Listing

Publication Analysis

Top Keywords

teleost
8
cichlid fishes
8
gene duplications
8
duplications genome
8
gene diversity
8
subunit genes
8
haemoglobin genes
8
haemoglobin
6
genes
6
haemoglobin gene
4

Similar Publications

Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research.

View Article and Find Full Text PDF

Food web architecture and trophic interactions between organisms can be studied using ratios of naturally occurring stable isotopes of carbon (C/C) and nitrogen (N/N). Most studies, however, focused on free-living organisms, but recently, there has been growing interest in understanding trophic interactions of parasites. The crustacean ectoparasite is a well-studied parasite of freshwater teleost fish, which has low host specificity and a cosmopolitan distribution.

View Article and Find Full Text PDF

Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm.

View Article and Find Full Text PDF

The nutritional status of fish is essential for its health, experimental studies, and aquaculture practices. The current study investigated the impact of food deprivation on biochemical parameters, histology of skin, gill, and kidney tissues, and ultrastructure of gills in Clarias batrachus. Fish were subjected to food deprivation for 2, 7, and 15 days resulting in (a) significant increase in plasma cortisol levels, (b) no significant changes in plasma osmolality and plasma glucose content, and (c) significant decrease in liver and muscle glycogen contents.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of three-spotted seahorse (Hippocampus trimaculatus) with a unique karyotype.

Sci Data

January 2025

Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.

Three-spotted seahorse (Hippocampi trimaculata) is a unique fish with important economic and medicinal values, and its total chromosome number is potentially quite different from other seahorse species. Herein, we constructed a chromosome-level genome assembly for this special seahorse by integration of MGI short-read, PacBio HiFi long-read and Hi-C sequencing techniques. A 416.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!