Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: An alternative to conventional posterior lumbar interbody fusion (PLIF) is a PLIF with transpedicular oblique screw fixation system. An assessment of new fixation system's viability and efficacy is conducted through a comparison of its biomechanical properties with those of conventional PLIF.
Method: A comprehensive finite element model (FEM) of the lumbar regions L1-L5 was developed and the surgical segment L3-L4 was chosen to comprise the surgical models of both traditional PLIF and new PLIF. In new PLIF model, an analysis was conducted on segmental range of motion (RoM), cage stress, inferior endplates stress, vertebral stress, and internal fixation stress. Three-dimensional printers are utilized to fabricate and assemble the fusion cage and vertebrae, and compression test machines are employed to execute physiological load and extreme load experiments on new PLIF, so as to verify the accuracy of the FEM analysis and the mode of fatigue exhibited by new PLIF.
Results: In new PLIF, the maximum stress on the inferior endplates under physiological loads was reduced in comparison to conventional PLIF. While the maximum stress on the cage, vertebral body, and screw increased, it remained within an acceptable range. The experimental data indicates that new fixation system can endure a vertical load exceeding 2800 N and an ultimate bending moment of 77 Nm.
Conclusion: The new PLIF exhibits a comparable RoM to its predecessor, simultaneously mitigating inferior endplate stress and accommodating physiological loads, which reduce the amount of surgical incision and fusion fixation instruments. Consequently, it emerges as a sanguine surgical approach to fuse the degenerative lumbar spine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491909 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e38929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!