Introduction: Potassium deficiency significantly hinders cotton growth and development, adversely affecting yield and fiber quality. Applying potassium fertilizer is a common practice to address potassium deficiency in the soil. However, the effectiveness of potassium fertilizer application depends on the appropriate soil potassium levels in cotton fields.
Methods: This study used a randomized block design with six different soil potassium levels and conducted experiments across 18 micro-zones in the field. This study aimed to investigate the response of cotton yield and quality to different soil potassium levels, to try to clarify the suitable soil potassium levels for cotton growth, so as to provide practical and effective help for determining the amount of potash fertilizer in the cotton field.
Results: The results showed that the seedcotton yield was increasing, with the soil potassium level increased under no tillage. There was no significant difference among K4, K5, and K6 on seedcotton yield, which were significantly higher than K1 and K2. As soil potassium levels increased, the proportion of autumn boll and the proportion of outer boll also increased, indicating that higher soil potassium levels support the better growth and development of cotton in the middle and late stages, leading to increased boll sets and higher yields. Additionally, the available potassium content in the 0-40-cm soil layer was significantly correlated with yield and yield parameters but not with fiber quality indices.
Discussion: It is concluded that K4 treatment could provide sufficient potassium to meet the growth and development needs of cotton. Potassium fertilizer application is recommended when the available potassium content in the 0-40-cm soil layer falls below 122.88 mg kg in the cotton field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491379 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1458367 | DOI Listing |
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.
View Article and Find Full Text PDFSci Total Environ
January 2025
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America. Electronic address:
Outbreaks of infectious diseases involving depopulation of animals require on-farm practices to stage carcasses when final disposal methods are unavailable. The current study assessed various materials and techniques for containing carcasses to minimize leachate and biological substances. The tested materials included tarps, soil, corn stover (CS), and lime, while the methods involved covers, chemical additives, barriers, and containment.
View Article and Find Full Text PDFMalar J
January 2025
Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!