AI Article Synopsis

  • Cancer rates are rising globally, necessitating more effective and low-toxicity treatment options, which can be achieved through nanotechnology tailored to individual patients' tumors.
  • Nanomedicine is making strides with various nanoformulations in clinical trials and some already on the market, but there are hurdles to widespread use, including ethical, safety, and cost concerns.
  • The text highlights advances in personalized diagnostics and therapies through technologies like organ-on-chip and CRISPR/Cas9, while also addressing the future prospects and challenges of integrating nano-based precision oncology into everyday clinical practice.

Article Abstract

Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491554PMC
http://dx.doi.org/10.1002/mco2.767DOI Listing

Publication Analysis

Top Keywords

clinical trials
8
approved marketed
8
cancer
5
nanomedicine cancer
4
cancer patient-centered
4
patient-centered care
4
care cancer
4
cancer leading
4
leading morbidity
4
morbidity mortality
4

Similar Publications

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

Precision medicine using molecular-target drugs in psoriatic arthritis.

Ther Adv Musculoskelet Dis

January 2025

The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu 807-8555, Japan.

Psoriatic arthritis (PsA) presents various clinical manifestations, including skin lesions, peripheral arthritis, axial involvement, enthesitis, nail involvement, dactylitis, and uveitis. In addition, it causes a high incidence of lifestyle-related diseases and an increase in cerebrovascular and cardiovascular events. As the pathology of PsA has been clarified, molecular-targeted drugs targeting tumor necrosis factor-α, interleukin (IL)-17A, IL-17A/F, IL-17 receptor, IL-12/23(p40), IL-23p19, Cytotoxic T-lymphocyte Antigen-4 (CTLA-4), Janus kinase, and phosphodiesterase-4 have been developed and are widely used in clinical practice.

View Article and Find Full Text PDF

Objective: The purpose of the study was to compare the impact of the mobilization techniques and mobilization with movement techniques on static balance in individuals with acute inversion ankle sprain.

Methods: Volunteers with acute inversion ankle sprain ( = 40) were equally and randomly assigned to 2 groups. Participants in intervention group I received the Mulligan mobilization with movement techniques, whereas participants in intervention group II underwent the Maitland mobilization techniques.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear.

View Article and Find Full Text PDF

Using simulated data with duplicate observational data points, this research aims to highlight the notable efficiency of repeated measures analysis of variance (ANOVA) compared to one-way ANOVA as a more powerful statistical model. One of the principal advantages of repeated measures ANOVA is its design, in which each subject acts as their own control. This methodology allows for the statistical mitigation of individual differences among subjects, thereby reducing extraneous variability (noise) that can obscure the effects of the experimental conditions under investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!