B cell mechanosensing regulates ER remodeling at the immune synapse.

Front Immunol

Immune Cell Biology Lab, Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Santiago, Chile.

Published: October 2024

Introduction: Engagement of the B-cell receptor with immobilized antigens triggers the formation of an immune synapse (IS), a complex cellular platform where B-cells recruit signaling molecules and reposition lysosomes to promote antigen uptake and processing. Calcium efflux from the endoplasmic reticulum (ER) released upon BCR stimulation is necessary to promote B-cell survival and differentiation. Whether the spatial organization of the ER within the B-cell synapse can tune IS function and B-cell activation remains unaddressed. Here, we characterized ER structure and interaction with the microtubule network during BCR activation and evaluated how mechanical cues arising from antigen presenting surfaces affect this process.

Methods: B-cells were cultured on surfaces of varying stiffness coated with BCR ligands, fixed, and stained for the ER and microtubule network. Imaging analysis was used to assess the distribution of the ER and microtubules at the IS.

Results: Upon BCR activation, the ER is redistributed towards the IS independently of peripheral microtubules and accumulates around the microtubule-organization center. Furthermore, this remodeling is also dependent on substrate stiffness, where greater stiffness triggers enhanced redistribution of the ER.

Discussion: Our results highlight how spatial reorganization of the ER is coupled to the context of antigen recognition and could tune B-cell responses. Additionally, we provide novel evidence that the structural maturation of the ER in plasma cells is initiated during early activation of B-cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491372PMC
http://dx.doi.org/10.3389/fimmu.2024.1464000DOI Listing

Publication Analysis

Top Keywords

immune synapse
8
microtubule network
8
bcr activation
8
b-cell
5
cell mechanosensing
4
mechanosensing regulates
4
regulates remodeling
4
remodeling immune
4
synapse introduction
4
introduction engagement
4

Similar Publications

Depression is a prevalent mental illness that significantly impairs individuals' overall quality of life and physical well-being. However, the pathological mechanisms of depression remain unclear, and effective treatment strategies are urgently needed. Pentraxin 3 (PTX3), a long pentraxin protein, plays a significant role in various pathological conditions, including infections, immune responses, and tissue repair.

View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

Introduction: Unfolded Von Willebrand Factor (VWF) is increased in thrombotic pathologies such as myocardial infarction. Unfolded VWF mediates the binding of platelets without the need for collagen. β-glycoprotein I (β-GPI) is a natural inhibitor of the platelet-VWF interaction.

View Article and Find Full Text PDF

Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro.

J Neurosci Methods

December 2024

Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, the Netherlands; Department of Child and Adolescent Psychiatry, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam 1081 HV, the Netherlands.

Background: Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.

New Method: In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.

View Article and Find Full Text PDF

A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion.

Neuron

December 2024

Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA. Electronic address:

The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!