Comprehensive multi-omics integration uncovers mitochondrial gene signatures for prognosis and personalized therapy in lung adenocarcinoma.

J Transl Med

Shanghai YangZhi Rehabilitation Hospital(Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.

Published: October 2024

The therapeutic efficacy of lung adenocarcinoma (LUAD), the most prevalent histological subtype of primary lung cancer, remains inadequate, with accurate prognostic assessment posing significant challenges. This study sought to elucidate the prognostic significance of mitochondrial-related genes in LUAD through an integrative multi-omics approach, aimed at developing personalized therapeutic strategies. Utilizing transcriptomic and single-cell RNA sequencing (scRNA-seq) data, alongside clinical information from publicly available databases, we first applied dimensionality reduction and clustering techniques to the LUAD single-cell dataset, focusing on the subclassification of fibroblasts, epithelial cells, and T cells. Mitochondrial-related prognostic genes were subsequently identified using TCGA-LUAD data, and LUAD cases were stratified into distinct molecular subtypes through consensus clustering, allowing for the exploration of gene expression profiles and clinical feature distributions across subtypes. By leveraging an ensemble of machine learning algorithms, we developed an Artificial Intelligence-Derived Prognostic Signature (AIDPS) model based on mitochondrial-related genes and validated its prognostic accuracy across multiple independent datasets. The AIDPS model demonstrated robust predictive power for LUAD patient outcomes, revealing significant differences in responses to immunotherapy and chemotherapy, as well as survival outcomes between risk groups. Furthermore, we conducted comprehensive analyses of tumor mutation burden (TMB), immune microenvironment characteristics, and genome-wide association study (GWAS) data, providing additional insights into the mechanistic roles of mitochondrial-related genes in LUAD pathogenesis. This study not only offers a novel approach to improving prognostic assessments in LUAD but also establishes a strong foundation for the development of personalized therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492473PMC
http://dx.doi.org/10.1186/s12967-024-05754-yDOI Listing

Publication Analysis

Top Keywords

mitochondrial-related genes
12
lung adenocarcinoma
8
genes luad
8
personalized therapeutic
8
aidps model
8
luad
7
prognostic
6
comprehensive multi-omics
4
multi-omics integration
4
integration uncovers
4

Similar Publications

Identification of macrophage polarisation and mitochondria-related biomarkers in diabetic retinopathy.

J Transl Med

January 2025

Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.

Background: The activation of macrophages or microglia in patients' whole body or local eyes play significant roles in diabetic retinopathy (DR). Mitochondrial function regulates the inflammatory polarization of macrophages. Therefore, the common mechanism of mitochondrial related genes (MRGs) and macrophage polarisation related genes (MPRGs) in DR is explored in our study to illustrate the pathophysiology of DR.

View Article and Find Full Text PDF

Prognosis prediction and drug guidance of ovarian serous cystadenocarcinoma through mitochondria gene-based model.

Cancer Genet

December 2024

Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China. Electronic address:

Background: Mitochondrial dysregulation contributes to the chemoresistance of multiple cancer types. Yet, the functions of mitochondrial dysregulation in Ovarian serous cystadenocarcinoma (OSC) remain largely unknown.

Aim: We sought to investigate the function of mitochondrial dysregulation in OSC from the bioinformatics perspective.

View Article and Find Full Text PDF

Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck that significantly impacts patients' quality of life, with chemotherapy resistance notably affecting prognosis. This study aims to identify prognostic biomarkers to optimize treatment strategies for LSCC. Using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), combined with mitochondrial gene database analysis, we identified mitochondrial lncRNAs associated with drug resistance genes.

View Article and Find Full Text PDF

Establishment and validation of a prognostic model for idiopathic pulmonary fibrosis based on mitochondrial-related genes.

J Thorac Dis

November 2024

Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.

Background: The prognosis for patients diagnosed with idiopathic pulmonary fibrosis (IPF) is exceedingly grim, and there are currently no pharmacological interventions available that effectively reduce mortality rates. Emerging evidence underscores the intimate connection between mitochondrial dysfunction and the onset and advancement of IPF. However, there remains a scarcity of prognostic models for assessing the risk associated with mitochondrial-related genes in IPF.

View Article and Find Full Text PDF

Background: Cigarette smoking is known to affect muscle function and exercise capacity, including muscle fatigue resistance. Most studies showed diminished cross-sectional area and fibre type shifting in slow-twitch muscles such as the soleus, while effects on fast-twitch muscles were seldom reported and the differential responses between muscle types in response to exposure to cigarette smoke (CS) were largely unknown. This study aimed to elucidate the histomorphological, biochemical and transcriptomic changes induced by CS on both slow-twitch and fast-twitch muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!