Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-024-01827-4 | DOI Listing |
Sci Rep
December 2024
Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons.
View Article and Find Full Text PDFVirulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFSci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China; School of Clinical Medicine, Jining Medical University, Jining, China; Institute of Oral Basic Research, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University. Electronic address:
Diabetes exacerbates the occurrence and severity of periodontitis, the pathogenesis of diabetic periodontitis (DPD) is influenced by the delayed resolution of inflammation. Eldecalcitol (ED-71) has shown promise in preventing bone loss in DPD. We herein aimed to investigate the role of ED-71 in the inflammatory regression phase of DPD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFMar Drugs
November 2024
School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia.
Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!