In the canonical genetic code, the 61 sense codons are assigned to the 20 proteinogenic amino acids. Advancements in genetic code manipulation techniques have enabled the ribosomal incorporation of nonproteinogenic amino acids (npAAs). The critical molecule for translating messenger RNA (mRNA) into peptide sequences is aminoacyl-transfer RNA (tRNA), which recognizes the mRNA codon through its anticodon. Because aminoacyl-tRNA synthetases (ARSs) are highly specific for their respective amino acid-tRNA pairs, it is not feasible to use natural ARSs to prepare npAA-tRNAs. However, flexizymes are adaptable aminoacylation ribozymes that can be used to prepare diverse aminoacyl-tRNAs at will using amino acids activated with suitable leaving groups. Regarding recognition elements, flexizymes require only an aromatic ring in either the leaving group or side chain of the activated amino acid, and the conserved 3'-end CCA of the tRNA. Therefore, flexizymes allow virtually any amino acid to be charged onto any tRNA. The flexizyme system can handle not only L-α-amino acids with side chain modifications but also various backbone-modified npAAs. This Review describes the development of flexizyme variants and discusses their structure and mechanism and their applications in genetic code reprogramming for the synthesis of unique peptides and proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41570-024-00656-5 | DOI Listing |
Viruses
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, China.
, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.
View Article and Find Full Text PDFViruses
December 2024
Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Science, Northwest University, Xi'an 710069, China.
Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Nanchang University, Nanchang 330031, China.
is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!