AI Article Synopsis

  • Colloidal gold nanoparticles (AuNPs) are typically synthesized using heated or boiling water with HAuCl and sodium citrate, but high temperatures can lead to particle aggregation.
  • This study introduces a new method for creating ultra-stable AuNPs using citric acid, dihydrolipoic acid, and dihydrolipoic acid-alanine, which allows for rapid synthesis under UV light at room temperature.
  • The research examines how various factors like reaction time, temperature, and pH influence AuNP formation and stability, and demonstrates the AuNPs' ability to efficiently catalyze the reduction of 4-nitrophenol to 4-aminophenol.

Article Abstract

In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 °C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494073PMC
http://dx.doi.org/10.1038/s41598-024-76772-5DOI Listing

Publication Analysis

Top Keywords

aunps
11
dihydrolipoic acid
8
directed rapid
8
rapid synthesis
8
gold nanoparticles
8
aunps synthesized
8
surface aunps
8
reduction ion
8
temperature
5
light promoted
4

Similar Publications

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Dual-plasmonic eccentric nanostructure with prominent colorimetric and photothermal performance to detect zearalenone by dual signal immunochromatography assay.

Talanta

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China. Electronic address:

In the study, an eccentric heterogeneous core-shell nanomaterial Au@CuSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%.

View Article and Find Full Text PDF

Hierarchical Porous Microspheres-Assisted Serum Metabolic Profile for the Early Diagnosis and Surveillance of Postmenopausal Osteoporosis.

Anal Chem

December 2024

Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.

With the aging global population, the incidence of osteoporosis (OP) is increasing, putting more individuals at risk. Since postmenopausal osteoporosis (PMOP) often remains asymptomatic until a fracture occurs, making the early clinical diagnosis of PMOP particularly challenging. In this work, the AuNPs-anchored hierarchical porous ZrO microspheres (Au/HPZOMs) is designed to assist laser desorption/ionization mass spectrometry (LDI-MS) for the requirement of serum metabolic fingerprints of PMOP, postmenopausal osteopenia (PMON), and healthy controls (HC) and realize the early diagnosis and surveillance of PMOP.

View Article and Find Full Text PDF

Development of a Novel Colorimetric pH Biosensor Based on A-Motif Structures for Rapid Food Freshness Monitoring and Spoilage Detection.

Biosensors (Basel)

December 2024

International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Accurate methods for assessing food freshness through colorimetric pH response play a critical role in determining food spoilage and ensuring food quality standards. This study introduces a novel unlabeled DNA sequence, poly-dA, designed to exploit the colorimetric properties of both the single strand and the fold-back A-motif structure in conjunction with gold nanoparticles (AuNPs) under varying pH conditions. When exposed to storage temperatures of 4 °C and 25 °C, the color variations in the AuNP solution, influenced by pH level changes in mutton and sea bass samples' different storage periods, are easily discernible to the naked eye within a minute.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!