Preclinical studies of optic nerve injury models have led to significant insight into the mechanism underlying retinal ganglion cell neurodegeneration. During the process of ganglion cell injury, morphological changes can occur prior to gross structural changes and cell death. Similarly, following injury, functional changes can occur in the absence of substantive structural changes. These more subtle effects can often be detected using functional tools such as the electroretinogram. Moreover, the electroretinogram is a sensitive and complementary means to quantify treatment efficacy. Here, we describe in vivo electroretinography for assessing ganglion cell injury in rodent models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4140-8_17DOI Listing

Publication Analysis

Top Keywords

ganglion cell
16
cell injury
12
rodent models
8
changes occur
8
structural changes
8
cell
5
injury
5
full-field electroretinogram
4
electroretinogram responses
4
responses rodent
4

Similar Publications

Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.

View Article and Find Full Text PDF

Background/ Aims: To analyze the longitudinal change in Bruch's membrane opening minimal rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (pRNFL) thickness using optical coherence tomography (OCT) after implantation of a PRESERFLO® microshunt for surgical glaucoma management in adult glaucoma patients.

Methods: Retrospective data analysis of 59 eyes of 59 participants undergoing implantation of a PRESERFLO microshunt between 2019 and 2022 at a tertiary center for glaucoma management. Surgical management included primary temporary occlusion of the glaucoma shunt to prevent early hypotony.

View Article and Find Full Text PDF

The impact of various neurodegenerative diseases on the retina has been investigated in recent years using optical coherence tomography (OCT). Epilepsy, classified as a neurodegenerative disorder, has been indicated to affect the structural integrity of the retina. Moreover, there is ongoing debate regarding the relative contribution of disease pathogenesis and the consumption of anti-epileptic drugs (AEDs) to these retinal changes.

View Article and Find Full Text PDF

Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas.

Stem Cell Reports

January 2025

Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:

We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!