A field experiment was carried out during the Rabi 2022-23 at Punjab Agricultural University, Ludhiana to evaluate the effect of pyroxasulfone and pendimethalin on soil enzymatic and microbial activities when applied individually or as a tank mix combination. The experiment employed a factorial randomized complete block design in triplicate encompassing 16 treatments. Control soils exhibited a continuous increase in enzymatic and microbial activities over time. In herbicide-treated plots, a highly dose-dependent lag phase was observed in all enzymatic and microbial activities which gets shorter or disappear at higher application rates. Following the initial lag phase, inhibition in enzymatic and microbial activities was observed with higher inhibition in tank mix combination (90.7 to 99.1% up to 90 days after herbicide application (DAA) followed by pendimethalin (77.3 to 92.9% up to 90 DAA) and pyroxasulfone (30.3 to 76.2% up to 45 DAA). After initial inhibition, enzymatic and microbial activities increased at harvest. Principal component analysis (PCA) revealed that dehydrogenase activity among soil enzymes and bacteria among microbial populations were more sensitive to studied herbicides. Based on the values of the Integrated Biomarker Response (IBRv2), pendimethalin had a greater impact on soil activities than pyroxasulfone, and their combined application exhibited a synergistic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13259-w | DOI Listing |
J Anim Sci
January 2025
Department of Animal Science, South Dakota State University, Brookings, USA.
The study investigated the effect of dietary inclusion of high amylose cornstarch (HA-starch) on cecal microbiota composition and volatile fatty acid (VFA) concentrations in weanling pigs fed high levels of cold-pressed canola cake (CPCC). Weaned pigs (240 mixed sex; 7.1 ± 1.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
Residual feed intake (RFI) is a better indicator of feed efficiency than feed conversion ratio (FCR). It is frequently used to evaluate the efficacy of poultry and livestock feed consumption. Generally, Low RFI (LRFI) is associated with better feed conversion efficiency, whereas high RFI (HRFI) suggests poorer feed conversion efficiency.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266100, China. Electronic address:
The excessive use of antibiotics in mariculture has surpassed permitted levels, leading to their release into surrounding waters and accumulation in cultured organisms, which poses risks to human health and highlighting the urgent need for alternatives to reduce antibiotic use. Therefore, the present study aimed to test four microbes including Debaryomyces hansenii, Ruegeria mobilis, Lactobacillus plantarum and Bacillus subtilis, on lowering Vibrio, promoting population increase and survival of Brachionus plicatilis. The digestive enzymes activity including α-amylase, lipase and protease, microbial retention and biochemical composition of rotifers were analyzed.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!