Optical moiré bound states in the continuum.

Nat Commun

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.

Published: October 2024

Trapping electromagnetic waves within the radiation continuum holds significant implications in the field of optical science and technology. Photonic bound states in the continuum (BICs) present a distinctive approach for achieving this functionality, offering potential applications in laser systems, sensing technologies, and other domains. However, the simultaneous achievement of high Q-factors, flat-band dispersions, and wide-angle responses in photonic BICs has not yet been reported, thereby impeding their practical performance due to laser direction deviation or sample disorder. Here, we theoretically demonstrate the construction of moiré BICs in one-dimensional photonic crystal (PhC) slabs, where high-Q resonances in the entire moiré flat band are achieved. Specifically, we numerically validate that the radiation loss of moiré BICs can be eliminated by aligning multiple topological polarization charges with all diffraction channels, enabling the strong suppression of far-field radiation from the entire moiré band. This leads to a slow decay of Q-factors away from moiré BICs in the momentum space. Moreover, it is found that Q-factors of the moiré flat band can still maintain at a high level with structural disorder. In experiments, we fabricate the designed 1D moiré PhC slab and observe both high-Q resonances and a slow decrease of Q-factors for moiré flat-band Bloch modes. Our findings hold promising implications for designing highly efficient optical devices with wide-angle responses and introduce a novel avenue for exploring BICs in moiré superlattices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493988PMC
http://dx.doi.org/10.1038/s41467-024-53433-9DOI Listing

Publication Analysis

Top Keywords

moiré bics
12
q-factors moiré
12
moiré
9
bound states
8
states continuum
8
wide-angle responses
8
high-q resonances
8
entire moiré
8
moiré flat
8
flat band
8

Similar Publications

Chlorogenic acids (CGAs) play a key role in defining the quality and functionality of coffee products. CGA fingerprints of black instant coffee (BIC) and coffee bean extract (CBE) were profiled using ultra-performance liquid chromatography-mass spectrometry and analyzed by chemometrics. A total of 25 CGAs were identified.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.

View Article and Find Full Text PDF

Realization of Merged Topological Corner States in the Continuum in Acoustic Crystals.

Phys Rev Lett

December 2024

Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Merging bound states in the continuum (BICs) has significant promise for wave manipulation since it can provide an ultrahigh Q factor when compared to the isolated BICs. However, the study of merging topological bound states in the continuum (TBICs) remains largely unexplored. In this Letter, we introduce a straightforward structure for crafting the merged higher order TBICs, i.

View Article and Find Full Text PDF

Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!