A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How the Most Neglected Residual Species in MOF-Based Catalysts Involved in Catalytic Reactions to Form Toxic Byproducts. | LitMetric

In recent years, multifarious new materials have been developed for environmental governance. Thereinto, metal organic framework (MOF)-based catalysts have been widely employed for heterogeneous catalysis because of their high porosity to confine noble metal particles faraway from aggregation. However, the potential reactions between residual species from the material synthesis process and target pollutants, which could form highly toxic byproducts, are often neglected. Herein, we took the widely used Zr-MOF, UiO-66, with highly thermal stability supported Pd catalysts as the example to investigate how the residual species in catalysts are involved in aromatic volatile organic compounds (VOCs) degradation reaction. The results showed that residual Cl species originated from the ZrCl metal precursor participated in the VOC degradation reaction, leading to the production of various chlorine-containing byproducts, even the hypertoxicity dioxin precursor, dichlorobenzene. Meanwhile, the chlorination mechanism for the formation of chlorine-containing byproducts was revealed by density functional theory calculation. Furthermore, the highly efficient residual Cl removal approaches are proposed. Importantly, the migration and transformation of residual Cl during the degradation of five benzene series VOCs are comprehensively studied and elucidated. We anticipate that these findings will raise alarm about the neglected issue of residual species in MOF-based catalysts for heterogeneous catalysis, especially environmentally friendly catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c06351DOI Listing

Publication Analysis

Top Keywords

residual species
20
mof-based catalysts
12
species mof-based
8
catalysts involved
8
toxic byproducts
8
heterogeneous catalysis
8
degradation reaction
8
chlorine-containing byproducts
8
residual
6
species
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!