Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here, we present a novel algorithm for extrasensitive and specific variable (V) and joining (J) gene allele inference, allowing the reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing data sets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain () AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain ( and ) AIRR-seq data set, representing 134 individuals. This allowed us to assess the genetic diversity within the , , and loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through VDJ.online database.

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.278775.123DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694755PMC

Publication Analysis

Top Keywords

repertoire sequencing
12
sequencing data
12
airr-seq data
12
allele inference
8
adaptive immune
8
immune receptor
8
receptor loci
8
chain airr-seq
8
data
7
airr-seq
5

Similar Publications

Background: RNA editing represents one of the most common post-transcriptional modifications that contribute to transcriptomic diversity, impacting RNA stability and regulations. To this end, we sought to investigate brain region-specific RNA-editing signatures (RNA-editings) associated with Alzheimer's disease (AD) and the human aged brain with regulatory elements.

Method: We investigated the genome-wide landscape of RNA-editings from 4,208 (1,364 AD case vs.

View Article and Find Full Text PDF

Microsatellite instability (MSI) is a critical phenotype of cancer genomes and an FDA-recognized biomarker that can guide treatment with immune checkpoint inhibitors. Previous work has demonstrated that next-generation sequencing data can be used to identify samples with MSI-high phenotype. However, low tumor purity, as frequently observed in routine clinical samples, poses a challenge to the sensitivity of existing algorithms.

View Article and Find Full Text PDF

Age-Related Dynamics and Spectral Characteristics of the TCRβ Repertoire in Healthy Children: Implications for Immune Aging.

Aging Cell

January 2025

National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.

Article Synopsis
  • T-cell receptor (TCR) diversity is essential for a strong immune response, but there's limited data on this diversity in children.
  • Researchers sequenced the TCRβ chain of 325 healthy Chinese kids, finding that TCRβ diversity decreases as they age, marked by more dominant clonotypes and changes in certain genetic sequences.
  • They also noted a link between lower TCRβ diversity and fewer naïve CD4 T cells, and created a predictive model that shows certain TCRβ characteristics could indicate biological age, offering valuable insights for pediatric immune research.
View Article and Find Full Text PDF

Comparative analyses of persistence traits in O157:H7 strains belonging to different clades including REPEXH01 and REPEXH02 strains.

Front Microbiol

December 2024

Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.

Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.

View Article and Find Full Text PDF

In this study, we present a comprehensive peptidomic atlas of 13 maize tissues, covering both vegetative and reproductive phases. Using a three-frame translation of canonical coding sequences, we identified 6100 nonredundant endogenous peptides, significantly expanding the known plant peptide repertoire. By integrating peptidomic coexpression profiles with previously reported proteomic profiles, we found that the peptide abundance did not consistently correlate with the abundance of their source proteins, suggesting the presence of complex regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!