A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microenvironmental alkalization promotes the therapeutic effects of MSLN-CAR-T cells. | LitMetric

Triple-negative breast cancer (TNBC) is characterized by high invasion, prone metastasis, frequent recurrence and poor prognosis. Unfortunately, the curative effects of current clinical therapies, including surgery, radiotherapy, chemotherapy and immunotherapy, are still limited in patients with TNBC. In this study, we showed that the heterogeneous expression at the protein level and subcellular location of mesothelin (MSLN), a potential target for chimeric antigen receptor-T (CAR-T) cell therapy in TNBC, which is caused by acidification of the tumor microenvironment, may be the main obstacle to therapeutic efficacy. Alkalization culture or sodium bicarbonate administration significantly promoted the membrane expression of MSLN and enhanced the killing efficiency of MSLN-CAR-T cells both and , and the same results were also obtained in other cancers with high MSLN expression, such as pancreatic and ovarian cancers. Moreover, mechanistic exploration revealed that the attenuation of autophagy-lysosome function caused by microenvironmental alkalization inhibited the degradation of MSLN. Hence, alkalization of the microenvironment improves the consistency and high expression of the target antigen MSLN and constitutes a routine method for treating diverse solid cancers MSLN-CAR-T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499857PMC
http://dx.doi.org/10.1136/jitc-2024-009510DOI Listing

Publication Analysis

Top Keywords

msln-car-t cells
12
microenvironmental alkalization
8
msln
5
alkalization promotes
4
promotes therapeutic
4
therapeutic effects
4
effects msln-car-t
4
cells triple-negative
4
triple-negative breast
4
breast cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!