Imaging pollen using a Raspberry Pi and LED with deep learning.

Sci Total Environ

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:

Published: December 2024

AI Article Synopsis

  • A low-cost imaging sensor for airborne pollen monitoring could help alleviate hay fever symptoms by providing valuable data.
  • The process involves using a white LED and a Raspberry Pi camera to capture scattering patterns of pollen grains, which are then enhanced through deep learning to create higher magnification images.
  • This innovative technique may also be useful for monitoring airborne pollutants, with potential applications in environmental science, health science, and agriculture.

Article Abstract

The production of low-cost, small footprint imaging sensor would be invaluable for airborne global monitoring of pollen, which could allow for mitigation of hay fever symptoms. We demonstrate the use of a white light LED (light emitting diode) to illuminate pollen grains and capture their scattering pattern using a Raspberry Pi camera. The scattering patterns are transformed into 20× microscope magnification equivalent images using deep learning. We show the ability to produce images of pollen from plant species previously unseen by the neural network in training. Such a technique could be applied to imaging airborne particulates that contribute to air pollution, and could be used in the field of environmental science, health science and agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177084DOI Listing

Publication Analysis

Top Keywords

deep learning
8
imaging pollen
4
pollen raspberry
4
raspberry led
4
led deep
4
learning production
4
production low-cost
4
low-cost small
4
small footprint
4
footprint imaging
4

Similar Publications

Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.

View Article and Find Full Text PDF

Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!