Mitigation of environmental impacts and challenges during hydrogen production.

Bioresour Technol

Department of Electrical and Electronic Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh. Electronic address:

Published: January 2025

AI Article Synopsis

  • * The paper evaluates the greenhouse gas emissions associated with each production method, analyzing their effects on natural cycles and identifying problems while proposing mitigation strategies.
  • * A comparative analysis of production costs, efficiency, and maturity levels highlights the transition from fossil fuels to biohydrogen, promoting its use for sustainable transportation and industrial practices.

Article Abstract

This paper presents hydrogen production methodologies, their impacts on the environment, and mitigation. Three different types of production procedures, namely fossil fuel-based, renewable energy-based, and biological, are presented along with their key technological characteristics and environmental feasibility. The effects of greenhouse gas emissions from its production on different natural cycles are carried out to show the environmental impact. Different production methods, problem identification, and mitigation of environmental impacts are separately pointed out. Analyses are shown for available methods in terms of their production cost, efficiency, maturity level, advantages, problems, and solutions. A comparative analysis is carried out along with different existing methods to find a suitable H production method. Finally, the transition pathway from fossil fuel to biohydrogen production is intended to promote biohydrogen for transportation and industrial applications. It demonstrates the possibility and potentiality of biohydrogen production for a sustainable future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131666DOI Listing

Publication Analysis

Top Keywords

production
9
mitigation environmental
8
environmental impacts
8
hydrogen production
8
biohydrogen production
8
impacts challenges
4
challenges hydrogen
4
production paper
4
paper presents
4
presents hydrogen
4

Similar Publications

The effects of unified pooling arrangement on health inequity in China: a DID-RIF approach.

BMC Health Serv Res

January 2025

School of Humanities and Social Sciences, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.

Background: To address the health inequity caused by decentralized management, China has introduced a provincial pooling system for urban employees' basic medical insurance. This paper proposes a research framework to evaluate similar policies in different contexts. This paper adopts a mixed-methods approach to more comprehensively and precisely capture the causal effects of the policy.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Classic congenital adrenal hyperplasia, primarily due to 21-hydroxylase deficiency, leads to impaired cortisol and aldosterone production and excess adrenal androgens. Lifelong glucocorticoid therapy is required, often necessitating supraphysiological doses in youth to manage androgen excess and growth acceleration. These patients experience higher obesity rates, hypertension, and glucose metabolism issues, complicating long-term health management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!