This paper presents hydrogen production methodologies, their impacts on the environment, and mitigation. Three different types of production procedures, namely fossil fuel-based, renewable energy-based, and biological, are presented along with their key technological characteristics and environmental feasibility. The effects of greenhouse gas emissions from its production on different natural cycles are carried out to show the environmental impact. Different production methods, problem identification, and mitigation of environmental impacts are separately pointed out. Analyses are shown for available methods in terms of their production cost, efficiency, maturity level, advantages, problems, and solutions. A comparative analysis is carried out along with different existing methods to find a suitable H production method. Finally, the transition pathway from fossil fuel to biohydrogen production is intended to promote biohydrogen for transportation and industrial applications. It demonstrates the possibility and potentiality of biohydrogen production for a sustainable future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131666 | DOI Listing |
BMC Health Serv Res
January 2025
School of Humanities and Social Sciences, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
Background: To address the health inequity caused by decentralized management, China has introduced a provincial pooling system for urban employees' basic medical insurance. This paper proposes a research framework to evaluate similar policies in different contexts. This paper adopts a mixed-methods approach to more comprehensively and precisely capture the causal effects of the policy.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya, 42310, Türkiye.
Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Surgery, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles and Keck School of Medicine of USC, Los Angeles, CA, USA.
Background: Classic congenital adrenal hyperplasia, primarily due to 21-hydroxylase deficiency, leads to impaired cortisol and aldosterone production and excess adrenal androgens. Lifelong glucocorticoid therapy is required, often necessitating supraphysiological doses in youth to manage androgen excess and growth acceleration. These patients experience higher obesity rates, hypertension, and glucose metabolism issues, complicating long-term health management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!