Mammalian somatic cells are generally unstable in the haploid state, resulting in haploid-to-diploid conversion within a short time frame. However, cellular and molecular principles that limit the sustainability of somatic haploidy remain unknown. In this study, we found the haploidy-linked vulnerability to endoplasmic reticulum (ER) stress as a critical cause of haploid intolerance in human somatic cells. Pharmacological induction of ER stress selectively induced apoptosis in haploid cells, facilitating the replacement of haploids by coexisting diploidized cells in a caspase-dependent manner. Biochemical analyses revealed that unfolded protein response (UPR) was activated with similar dynamics between haploids and diploids upon ER stress induction. However, haploids were less efficient in solving proteotoxic stress, resulting in a bias toward a proapoptotic mode of UPR signaling. Artificial replenishment of chaperone function substantially alleviated the haploidy-linked upregulation of proapoptotic signaling and improved haploid cell retention under tunicamycin-induced ER stress. These data demonstrate that the ER stress-driven haploid instability stems from inefficient proteostatic control that alters the functionality of UPR to cause apoptosis selectively in haploids. Interestingly, haploids suffered a higher level of protein aggregation even in unperturbed conditions, and the long-term stability of the haploid state was significantly improved by alleviating their natural proteotoxicity. Based on these results, we propose that the haploidy-specific vulnerability to ER stress creates a fundamental cause of haploid intolerance in mammalian somatic cells. Our findings provide new insight into the principle that places a stringent restriction on the evolution of animal life cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609373PMC
http://dx.doi.org/10.1016/j.jbc.2024.107909DOI Listing

Publication Analysis

Top Keywords

somatic cells
16
haploid
8
haploid instability
8
human somatic
8
mammalian somatic
8
haploid state
8
haploid intolerance
8
cells
6
stress
6
somatic
5

Similar Publications

Background: Immune checkpoint inhibitors (ICIs) are effective in a subset of patients with metastatic solid tumors. However, the patients who would benefit most from ICIs in biliary tract cancer (BTC) are still controversial.

Materials And Methods: We molecularly characterized tissues and blood from 32 patients with metastatic BTC treated with the ICI pembrolizumab as second-line therapy.

View Article and Find Full Text PDF

Background: Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood.

Methods: LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort.

View Article and Find Full Text PDF

Disseminated tumor cells in bone marrow as predictive classifiers for small cell lung cancer patients.

J Natl Cancer Cent

December 2024

Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Aneuploid CD31 disseminated tumor cells (DTCs) and CD31 disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical significance of DTCs and DTECs in SCLC remains poorly understood.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Polyploidization (diploidy → polyploidy) was more likely to be positively associated with seed mass than with seed germination. Polyploidy is common in flowering plants, and polyploidization can be associated with the various stages of a plant's life cycle. Our primary aim was to determine the association (positive, none or negative) of polyploidy with seed mass/germination via a literature review.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!