Alpha-1-B glycoprotein (A1BG) inhibits sterol-binding and export by CRISP2.

J Biol Chem

Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland. Electronic address:

Published: December 2024

Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in various processes, including sperm maturation and cancer progression. They are mostly secreted glycoproteins and share a unique conserved CAP domain. The precise mode of action of these proteins, however, has remained elusive. Saccharomyces cerevisiae expresses three members of this protein family, which bind sterols in vitro and promote sterol secretion from cells. This sterol-binding and export function of yeast Pry proteins is conserved in the mammalian cysteine-rich secretory protein (CRISP) proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with alpha-1-B glycoprotein (A1BG), a human plasma glycoprotein that is upregulated in different types of cancers. Here, we examined whether the interaction between CRISP proteins and A1BG affects the sterol-binding function of CAP family members. Coexpression of A1BG with CAP proteins abolished their sterol export function in yeast and their interaction inhibits sterol-binding in vitro. We map the interaction between A1BG and CRISP2 to the third of five repeated immunoglobulin-like domains within A1BG. Interestingly, the interaction between A1BG and CRISP2 requires magnesium, suggesting that coordination of Mg by the highly conserved tetrad residues within the CAP domain is essential for a stable interaction between the two proteins. The observation that A1BG modulates the sterol-binding function of CRISP2 has potential implications for the role of A1BG and related immunoglobulin-like domain containing proteins in cancer progression and the toxicity of reptile venoms containing CRISP proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599453PMC
http://dx.doi.org/10.1016/j.jbc.2024.107910DOI Listing

Publication Analysis

Top Keywords

crisp proteins
12
a1bg
9
proteins
9
alpha-1-b glycoprotein
8
glycoprotein a1bg
8
inhibits sterol-binding
8
sterol-binding export
8
cap superfamily
8
cancer progression
8
cap domain
8

Similar Publications

The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.

View Article and Find Full Text PDF

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

Background: The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway.

View Article and Find Full Text PDF

Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini).

Toxicon

January 2025

Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil. Electronic address:

The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A (PLA) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P.

View Article and Find Full Text PDF

CRL3 ubiquitin ligase and Integrator phosphatase form parallel mechanisms to control early stages of RNA Pol II transcription.

Mol Cell

December 2024

Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. Electronic address:

Control of RNA polymerase II (RNA Pol II) through ubiquitylation is essential for the DNA-damage response. Here, we reveal a distinct ubiquitylation pathway in human cells, mediated by CRL3, that targets excessive and defective RNA Pol II molecules at the initial stages of the transcription cycle. Upon ARMC5 loss, RNA Pol II accumulates in the free pool and in the promoter-proximal zone but is not permitted into elongation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!