Air pollution is a worldwide health hazard; thus, improving air quality is a demanding need. Photocatalysis is a robust strategy for air treatment. The boosted activity of the photocatalytic system depends on tuning their properties for the particular application. BiOX (X: Cl, I) compounds are emergent photocatalytic systems with numerous advantages for air treatment. However, their optical properties (E) and fast recombination of active species (e/h) limit their practical applications. In this study, we remark on the properties of BiOX-GO systems for indoor air purification. We use a microwave-activated solvothermal technique to synthesize the nanomaterials (NMs). BiOX NMs exhibit hierarchical 3D structures, crystallinity, and tunable optical absorption properties. BiOX-GO composites present an enhanced visible-light photocatalytic activity due to the electron acceptor capacity of GO and modification of E. The indoor air disinfection capacity of the NMs ranked as follows: BiOCl-GO (96.7%) > BiOI-GO (96.2%) > BiOI (89.2%) > BiOCl (79%). The higher efficiency under visible light of BiOCl-GO can be related to the presence of oxygen vacancies, strong oxidation potential, and single crystalline phase of the materials. Due to the abundance and biocompatibility of bismuth-containing compounds, together with their enhanced visible light activity, BiOX become potent candidates for environmentally sustainable remediation technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143539 | DOI Listing |
Curr Environ Health Rep
January 2025
Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.
Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
University of Ottawa, Ottawa, Canada.
We evaluated enterocyte damage (IFABP), microbial translocation (sCD14), and inflammatory responses (TNF-α, IL-6, CRP) in 16 older adults (66-78 years) during 8 hours rest in conditions simulating homes maintained at 22°C (control), the 26°C indoor temperature upper limit proposed by health agencies, and homes without air-conditioning during heatwaves (31°C, 36°C). Relative to 22°C, IFABP was elevated ~181 pg/mL after exposure to 31°C (P=0.07), and by ~378 pg/mL (P<0.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
January 2025
Division of Immunology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
Purpose Of Review: This manuscript reviews the impact of important indoor environmental exposures on pediatric asthma, with a focus on recent literature in the field.
Recent Findings: Studies continue to support an association between numerous indoor aeroallergens and air pollutants found in homes and schools and increased asthma morbidity overall. Several recent home and school intervention studies have shown promise, though results have been overall mixed.
Int J Biometeorol
January 2025
Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
Climate change is making extreme heat events more frequent and intense. This negatively impacts many aspects of society, including organised sport. As the world's most watched sporting event, the FIFA World Cup commands particular attention around the threat of extreme heat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!