Tolperisone is a centrally acting muscle relaxant that has been used for the treatment of post-stroke spasticity and low back pain. Recently, the safety of tolperisone pharmaceutical products has been reassessed due to growing concerns over allergic adverse events. Reactive degradants of tolperisone may be responsible for these hypersensitivity reactions. By forming adducts with proteins, they may act as haptens that could evoke allergic reactions. The objective of this study was to examine the presence of these degradants in tolperisone pharmaceutical products and to assess their reactivity to elucidate their possible role in the pro-allergic effect of tolperisone. For this purpose, capillary electrophoresis UV detection (CE-UV) method was developed and validated for the quantification of degradants. A dual cyclodextrin system was applied to achieve the appropriate migration order enabling the analysis of 2-methyl-1-(4-methylphenyl)prop-2-en-1-one (MMP) and 1-(4-methylphenyl)propan-1-one (MMPO) in the presence of high concentrations of tolperisone. MMP was identified as the main degradant in forced degradation tests of the active pharmaceutical ingredient. Differences in MMP content of tolperisone products by different manufacturers have also been found, highlighting the role of formulation in their stability. High reactivity of MMP was demonstrated as rapid and almost complete adduct formation with cysteine was found. This degradant thus might be responsible for the allergic adverse effects of tolperisone even when it is present in trace amounts in tablets by readily reacting with proteins in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2024.116532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!