In this study, we employ both targeted and untargeted approaches to explore the metabolomic profiles of Vanilla spp., with a particular focus on V. cribbiana (VCR) and its comparison with V. planifolia (VP). We also examine V. bahiana and V. chamissonis using targeted approaches. Through advanced analytical techniques, our untargeted LC-HRMS approach led to the annotation of 60 metabolites, revealing a complex chemical composition with 34 novel compounds in the Vanilla genus in VCR and VP. These findings highlight significant flavoring compounds and lay the foundation for a subsequent quantitative estimation approach. Our targeted analysis, which measured key molecules, underscores VCR's potential in producing vanillin and acetovanillone at levels comparable to the commercially valuable VP and even higher levels of vanillic acid. This research enriches our understanding of flavor composition in vanilla species and emphasizes the importance of exploring wild relatives of vanilla crop for sustainable production and biodiversity conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141650 | DOI Listing |
J Proteome Res
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, Italy.
MALDI-HiPLEX-IHC mass spectrometry imaging (MSI) represents a newly established workflow to map tens of antibodies linked to photocleavable mass tags (PC-MTs), which report the distribution of antigens in formalin-fixed paraffin-embedded (FFPE) tissue sections. While this highly multiplexed approach has previously been integrated with untargeted methods, the possibility of mapping target cell antigens and performing bottom-up spatial proteomics on the same tissue section has yet to be explored. This proof-of-concept study presents a novel workflow combining MALDI-HiPLEX-IHC with untargeted spatial proteomics to analyze a single FFPE tissue section, using clinical clear cell renal cell carcinoma (ccRCC) tissue as a model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Nagoya City University, Nagoya, Japan.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Accumulation of amyloid-β (Aβ) in the brains causes chronic neuroinflammation, synaptic loss, and neurovascular damage, which is thought to initiate decades-long AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy highlights the utility of biomarkers that faithfully reflect Aβ-related brain pathology to diagnose AD at the preclinical stage, to predict the onset and progression of the disease, and to assess the therapeutic efficacy of drugs.
View Article and Find Full Text PDFItal J Food Saf
November 2024
Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia.
In 2022, the number of foodborne outbreaks in Europe increased by 43.9%, highlighting the need to improve surveillance systems and design outbreak predictive tools. This review aims to assess the scientific literature describing wastewater surveillance to monitor foodborne pathogens in association with clinical data.
View Article and Find Full Text PDFPhytomedicine
November 2024
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China. Electronic address:
Background: Cinnamomum cassia Presl (Lauraceae) is widely used as a medicinal plant in the folk medicine and pharmaceutic industry, for its promising anti-inflammatory, anti-oxidative, and anti-bacterial function. However, the major bioactive components were still in debate, and their underlying molecular mechanism was not yet fully understood.
Purpose: This study aimed to identify the bioactive ingredients of C.
Sci Rep
December 2024
The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!