Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Augmented-reality (AR) applications have shown potential for assisting and modulating gait in health-related fields, like AR cueing of foot-placement locations in people with Parkinson's disease. However, the size of the AR field of view (AR-FOV), which is smaller than one's own FOV, might affect interaction with nearby floor-based holographic objects. The study's primary objective was to evaluate the effect of AR-FOV size on the required head orientations for viewing and interacting with real-world and holographic floor-based objects during standstill and walking conditions. Secondary, we evaluated the effect of AR-FOV size on gait speed when interacting with real-world and holographic objects. Sixteen healthy middle-aged adults participated in two experiments wearing HoloLens 1 and 2 AR headsets that differ in AR-FOV size. To confirm participants' perceived differences in AR-FOV size, we examined the head orientations required for viewing nearby and far objects from a standstill position (Experiment 1). In Experiment 2, we examined the effect of AR-FOV size on head orientations and gait speeds for negotiating 2D and 3D objects during walking. Less downward head orientation was required for looking at nearby holographic objects with HoloLens 2 than with HoloLens 1, as expected given differences in perceived AR-FOV size (Experiment 1). In Experiment 2, a greater downward head orientation was observed for interacting with holographic objects compared to real-world objects, but again less so for HoloLens 2 than HoloLens 1 along the line of progression. Participants walked slightly but significantly slower when interacting with holographic objects compared to real-world objects, without any differences between the HoloLenses. To conclude, the increased size of the AR-FOV did not affect gait speed, but resulted in more real-world-like head orientations for seeing and picking up task-relevant information when interacting with floor-based holographic objects, improving the potential efficacy of AR cueing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493412 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311804 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!