Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we present a metal-free photosensitized three-component reaction for the carboimination of alkenes based on oxime carbonates. Homolysis of oxime carbonates via light-mediated energy transfer enables the simultaneous generation of iminyl radicals and alkoxycarbonyloxyl radicals. The alkoxycarbonyloxyl and alkoxy radicals can act as an effective hydrogen atom transfer reagent, abstracting hydrogen atoms from alkanes and aldehydes, silanes, and phosphine oxide. This strategy exhibits broad functional group tolerance under mild reaction conditions, further broadening the diversity of alkene carboimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c03247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!