Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Precise estimation of forest above ground biomass (AGB) is essential for assessing its ecological functions and determining forest carbon stocks. It is difficult to directly obtain diameter at breast height (DBH) based on remote sensing imagery. Therefore, it is crucial to accurately estimate the AGB with features extracted directly from RS. This paper demonstrates the feasibility of estimating AGB from crown radius (R) and tree height (H) features extracted from multi-source RS data. Accurate information on tree height (H), crown radius (R), and diameter at breast height (DBH) can be obtained through point clouds generated by airborne laser scanning (ALS) and terrestrial laser scanning (TLS), respectively. Nine allometric growth equations were used to fit coniferous forests (Larix principis-rupprechtii) and broadleaf forests (Fraxinus chinensis and Sophora japonica). The fitting performance of models constructed using only "H" or "R" was compared with that of models constructed using both combined. The results showed that the quadratic polynomial model constructed with "H+R" fitted the AGB estimation better in each vegetation type, especially in the scenario of mixed tall and short coniferous forests, in which the R2 and RMSE were 0.9282 and 25.30 kg (rRMSE 17.31%), respectively. Therefore, using high-resolution data to extract crown radius and tree height can achieve high-precision, global-scale estimation of forest above ground biomass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493275 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311642 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!