A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving AGB estimations by integrating tree height and crown radius from multisource remote sensing. | LitMetric

Precise estimation of forest above ground biomass (AGB) is essential for assessing its ecological functions and determining forest carbon stocks. It is difficult to directly obtain diameter at breast height (DBH) based on remote sensing imagery. Therefore, it is crucial to accurately estimate the AGB with features extracted directly from RS. This paper demonstrates the feasibility of estimating AGB from crown radius (R) and tree height (H) features extracted from multi-source RS data. Accurate information on tree height (H), crown radius (R), and diameter at breast height (DBH) can be obtained through point clouds generated by airborne laser scanning (ALS) and terrestrial laser scanning (TLS), respectively. Nine allometric growth equations were used to fit coniferous forests (Larix principis-rupprechtii) and broadleaf forests (Fraxinus chinensis and Sophora japonica). The fitting performance of models constructed using only "H" or "R" was compared with that of models constructed using both combined. The results showed that the quadratic polynomial model constructed with "H+R" fitted the AGB estimation better in each vegetation type, especially in the scenario of mixed tall and short coniferous forests, in which the R2 and RMSE were 0.9282 and 25.30 kg (rRMSE 17.31%), respectively. Therefore, using high-resolution data to extract crown radius and tree height can achieve high-precision, global-scale estimation of forest above ground biomass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493275PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311642PLOS

Publication Analysis

Top Keywords

tree height
16
crown radius
16
height crown
8
remote sensing
8
estimation forest
8
forest ground
8
ground biomass
8
diameter breast
8
breast height
8
height dbh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!