Myeloid leukemia factor 1 (Mlf1) was identified as a proto-oncoprotein that affects hematopoietic differentiation in humans. However, its cellular function remains elusive, spanning roles from cell cycle regulation to modulation of protein aggregate formation and participation in ciliogenesis. Given that structurally conserved homologs of Mlf1 can be found across the eukaryotic tree of life, we decided to characterize its cellular role underlying this phenotypic pleiotropy. Using a model of the unicellular eukaryote Giardia intestinalis, we demonstrate that its Mlf1 homolog (GiMlf) mainly localizes to two types of cytosolic foci: microtubular structures, where it interacts with Hsp40, and ubiquitin-rich, membraneless compartments, found adjacent to mitochondrion-related organelles known as mitosomes, containing the 26S proteasome regulatory subunit 4. Upon cellular stress, GiMlf either relocates to the affected compartment or disperses across the cytoplasm, subsequently accumulating into enlarged foci during the recovery phase. In vitro assays suggest that GiMlf can be recruited to membranes through its affinity for signaling phospholipids. Importantly, cytosolic foci diminish in the gimlf knockout strain, which exhibits extensive proteomic changes indicative of compromised proteostasis. Consistent with data from other cellular systems, we propose that Mlf acts in the response to proteotoxic stress by mediating the formation of function-specific foci for protein folding and degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527388PMC
http://dx.doi.org/10.1371/journal.ppat.1012617DOI Listing

Publication Analysis

Top Keywords

foci protein
8
protein folding
8
folding degradation
8
cytosolic foci
8
cellular
5
foci
5
mlf mediates
4
mediates proteotoxic
4
proteotoxic response
4
response formation
4

Similar Publications

Background: PSMA PET/CT emerges as a pivotal technology in the diagnostic landscape of prostate cancer (PCa). It offers a suite of imaging interpretation criteria, notably the maximum standardized uptake value (SUVmax), the molecular imaging prostate-specific membrane antigen score (miPSMA score), and the PSMA reporting and data system (PSMA-RADS). Identifying the most valuable criteria for diagnosing PCa and standardizing imaging interpretation across various tracers is an unresolved question.

View Article and Find Full Text PDF

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Objective: To evaluate the concentrations of CC-chemokines and stable metabolites of nitric oxide (NO) and endothelin-1 (ET-1) in patients with atherothrombotic (AT) and cardioembolic (CE) subtypes of ischemic stroke (IS) in the acute period.

Material And Methods: Sixty patients diagnosed with IS in the carotid basin were examined. Group 1 included 30 patients with AT, group 2 - 30 patients with CE subtype of IS.

View Article and Find Full Text PDF

Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm.

View Article and Find Full Text PDF

Background: We developed the FORCE platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!