Predictive modeling approaches are enabling progress toward robust and reproducible brain-based markers of neuropsychiatric conditions by leveraging the power of multivariate analyses of large datasets. While deep learning (DL) offers another promising avenue to further advance progress, there are challenges related to implementation in 3D (best for MRI) and interpretability. Here, we address these challenges and describe an interpretable predictive pipeline for inferring Autism diagnosis using 3D DL applied to minimally processed structural MRI scans. We trained 3D DL models to predict Autism diagnosis using the openly available ABIDE I and II datasets (n = 1329, split into training, validation, and test sets). Importantly, we did not perform transformation to template space, to reduce bias and maximize sensitivity to structural alterations associated with Autism. Our models attained predictive accuracies equivalent to those of previous machine learning (ML) studies, while side-stepping the time- and resource-demanding requirement to first normalize data to a template. Our interpretation step, which identified brain regions that contributed most to accurate inference, revealed regional Autism-related alterations that were highly consistent with the literature, encompassing a left-lateralized network of regions supporting language processing. We have openly shared our code and models to enable further progress towards remaining challenges, such as the clinical heterogeneity of Autism and site effects, and to enable the extension of our method to other neuropsychiatric conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493284PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276832PLOS

Publication Analysis

Top Keywords

deep learning
8
applied minimally
8
structural mri
8
neuropsychiatric conditions
8
autism diagnosis
8
autism
5
cnn neuropsychiatry
4
neuropsychiatry predicting
4
predicting autism
4
autism interpretable
4

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!