Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbamic acid (HNCOOH) is a small organic molecule that is terrestrially unstable in condensed phases under ambient conditions but could survive in the low densities and temperatures of the interstellar medium. In this work, the reaction of formamide (HNCOH) and electronically excited oxygen atoms in the D state, namely, O(D), has been investigated computationally to determine the feasibility of carbamic acid production. Geometries for carbamic acid and other potential reaction products have been calculated, as well as all pertinent transition states. In addition, harmonic and anharmonic frequency calculations were performed to determine quartic and sextic centrifugal distortion constants for all products. This work enables spectroscopic predictions that can guide the experimental search for carbamic acid. Presented here are the calculations, geometries, molecular constants, and spectral predictions for possible products of the reaction between formamide and O(D), as well as a discussion of which products are favored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c05611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!