Background: India's oilseed economy falls short of self-sufficiency and is supplemented by huge imports every year. Increasing national productivity of the major oilseeds is confronted with yield losses due to diverse biotic and abiotic stresses. The productivity of Indian mustard (Brassica juncea Linnaeus), belonging to the family Brassicaceae, is significantly reduced due to damage caused by mustard aphids (Lipaphis erysimi Kaltenbach, Hemiptera: Aphididae). Rapid colonization by the nymphs makes it difficult to protect the crop through agrochemicals. Aphids release effector molecules to modulate the host-defence responses. Glucosinolates (GSLs) extensively found in Brassicaceae family, are hydrolysed by myrosinase into toxic compounds that deter herbivore insects.

Methods: Here, we investigated the differential activation of the glucosinolate-myrosinase pathway in mustard manifesting susceptibility and resistance to different aphid species. Mustard plants were challenged by two different aphid species mustard aphid and cowpea aphid (Aphis craccivora Koch, Hemiptera: Aphididae) leading to complete host-susceptibility in one case and resistance in the other, respectively. Differential regulation of the GSL biosynthetic pathway and myrosinase activity was assessed by gene expression study and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC- QToF-ESL-MS).

Results: Gene expression study identified selective transcriptional attenuation of the key GSL biosynthetic and myrosinase gene in mustard when challenged with mustard aphid. In contrary, the activation of GSL biosynthetic genes in conjunction with myrosinase at the transcriptional level was profound in mustard, when challenged with cowpea aphid. UPLC-MS analysis showed higher turnover in the hydrolysis of glucosinolates by myrosinase which led to concomitant generation of glucose as byproduct in response to cowpea aphid in mustard plants.

Conclusion: GSL-myrosinase pathway is specifically attenuated by the successful aphid species in mustard and thus plays a pivotal role in determining the outcome of the B. juncea-aphid interaction. The results open up a new genetic modification strategy for developing resistance against aphids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-10002-zDOI Listing

Publication Analysis

Top Keywords

aphid species
12
species mustard
12
cowpea aphid
12
gsl biosynthetic
12
mustard
11
differential regulation
8
indian mustard
8
mustard brassica
8
brassica juncea
8
hemiptera aphididae
8

Similar Publications

Guar or cluster bean (Cyamopsis tetragonoloba L.) is a leguminous crop well-suited for cultivation in arid and semi-arid regions. India accounts for 90% of world's guar production.

View Article and Find Full Text PDF

Discarded sequencing reads uncover natural variation in pest resistance in .

Elife

December 2024

Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.

Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress () that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes.

View Article and Find Full Text PDF

Nitrogen-containing heterocycles have attracted attention for the development of chemicals because of their many types, high physiological activities, and ease of synthesis. Aphids are severe pests found worldwide that cause serious losses in crop yield and quality every year. In this study, a series of novel dienolone thiazole derivatives were synthesized using dienolone acetate as the parent molecule.

View Article and Find Full Text PDF

Species identification within the aphid genus Pemphigus Hartig, 1839 poses challenges due to morphological similarities and host-plant associations. Aphids of this genus generally exhibit complex life cycles involving primary hosts (poplars) and secondary (mostly unrelated herbaceous) host-plants, with some species relying solely on root-feeding generation. An example is a representative of the genus Pemphigus, trophically associated with grass roots, found in the High Arctic Svalbard archipelago.

View Article and Find Full Text PDF

Introduction: Aphids are phloem sap-sucking insects and are a serious destructive pest of several crop plants. Aphids are categorized as "generalists" or "specialists" depending on their host range. (Sulz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!