AI Article Synopsis

  • Dyslipidemia is a key risk factor for cardiovascular diseases, and current treatments primarily aim to lower LDL cholesterol levels to prevent conditions like atherosclerosis and myocardial infarction.
  • Homozygous Familial Hypercholesterolemia (HoFH) results from mutations in the LDL receptor, leading to very high LDL cholesterol levels, which often do not respond well to standard statin therapy.
  • Lomitapide, a microsomal triglyceride transfer protein inhibitor, has been approved for HoFH treatment; it effectively lowers LDL-C levels without affecting the LDL receptor and has been shown to reduce LDL-C by more than 50% in resistant cases.

Article Abstract

Dyslipidemia is the most significant risk factor for cardiovascular diseases (CVDs) Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med, Efficacy and safety of saroglitazar for the management of dyslipidemia: A systematic review and meta-analysis of interventional studies. The current treatment strategies for managing dyslipidemia focus on reducing low-density lipoprotein cholesterol (LDL-C) to minimize the risks of atherosclerosis and myocardial infarction (MI). Homozygous Familial Hypercholesterolemia (HoFH) is an inherited autosomal dominant disease caused by a mutation in the LDL receptor (LDLr), which can lead to extremely high levels of LDL-C The Beneficial Effect of Lomitapide on the Cardiovascular System in LDLr(-/-) Mice with Obesity, The microsomal triglyceride transfer protein inhibitor lomitapide improves vascular function in mice with obesity. Although statin therapy has been the primary treatment for dyslipidemia, HoFH patients do not respond well to statins, requiring alternative therapies. Microsomal triglyceride transfer protein (MTP) inhibition has emerged as a potential therapeutic target for treating HoFH. MTP is primarily responsible for transferring triglyceride and other lipids into apolipoprotein B (ApoB) during the assembly of very low-density lipoprotein (VLDL) particles in the liver. Lomitapide, an inhibitor of MTP, has been approved for treatingof HoFH adults. Unlike statins, lomitapide does not act on the LDLr to reduce cholesterol. Instead, lomitapide lowers the levels of ApoB-containing proteins, primarily VLDL, eventually decreasing LDL-C levels. Studies have shown that lomitapide can reduce LDL-C levels by more than 50% in patients with HoFH who have failed to respond adequately to other treatments. Lowering LDL-C levels is important for preventing atherosclerosis, reducing cardiovascular risk, improving endothelial function, and promoting overall cardiovascular health, especially for patients with HoFH Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. This review paper focuses on research findings regarding the therapeutic benefits of lomitapide, highlighting its effectiveness in lowering cholesterol levels and reducing the risk of CVDs The microsomal triglyceride transfer protein inhibitor lomitapide improves vascular function in mice with obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-10003-yDOI Listing

Publication Analysis

Top Keywords

microsomal triglyceride
16
triglyceride transfer
16
transfer protein
16
mice obesity
12
protein inhibitor
12
ldl-c levels
12
lomitapide
9
efficacy safety
8
low-density lipoprotein
8
homozygous familial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!