The gradual capacity decrease of vanadium redox flow battery (VRFB) over long-term charge-discharge cycling is determined by electrolyte degradation. While it was initially believed that this degradation was solely caused by crossover, recent research suggests that oxidative imbalance induced by hydrogen evolution reaction (HER) also plays a significant role. In this work by using vanadium pentoxides with different impurities content, we prepared three grades of vanadium electrolyte. By measuring electrochemical properties on carbon felt electrode in three-electrode cell and VRFB membrane-electrode assembly we evaluate the influence of impurity content on battery polarization and rate of side reactions which is indicated by the increase of average oxidation state (AOS) during charge-discharge tests and varies from 0.061 to 0.027 day for electrolytes made from 99.1 and 99.9 wt % VO. We found that increase of AOS correlates with the increase of open-circuit voltage of VRFB in the discharged state ranging from 9.6 to 14.9 mV day for highest and lowest electrolyte purity levels, respectively. While AOS increase is significant, it does not solely determine capacity fade. It is demonstrated that the presence of vanadium crossover decreases capacity fade, i. e. levels the contribution of side reactions on capacity drop.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202400372DOI Listing

Publication Analysis

Top Keywords

capacity fade
12
vanadium redox
8
redox flow
8
flow battery
8
impurity content
8
side reactions
8
vanadium
5
sensitivity capacity
4
fade vanadium
4
electrolyte
4

Similar Publications

Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems.

View Article and Find Full Text PDF

The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.

View Article and Find Full Text PDF

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) with high electrical conductivity and tunable structures hold significant promise for applications in metal-ion batteries. However, the construction of 3D interpenetrated c-MOFs for applications in metal-ion batteries is rarely reported. Herein, a 3D four-fold interpenetrated c-MOF (Cu-DBC) constructed by conjugated and contorted dibenzo[,]chrysene-2,3,6,7,10,11,14,15-octaol (DBC) ligands is explored as an advanced cathode material for sodium-ion batteries (SIBs) for the first time.

View Article and Find Full Text PDF

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

Failure of the active particles is inherently electrochemo-mechanics dominated. This review comprehensively examines the electrochemo-mechanical degradation and failure mechanisms of active particles in high-energy density lithium-ion batteries. The study delves into the growth of passivating layers, such as the solid electrolyte interphase (SEI), and their impact on battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!