Chimeric antigen receptor (CAR)-based cell therapies have shown impressive efficacy in the treatment of hematological malignancies. Recently, these therapies are being developed for infectious diseases, yet studies targeting fungal infections remain scarce. To identify optimal targets and optimize cellular products, we developed a method to engineer chimeric antigen receptor-natural killer (CAR-NK) cells and evaluated their response to stimulation by fungi. This paper describes a straightforward and robust method for generating CAR-NK cells tailored to fungal targets using the non-viral Sleeping Beauty transposon system. NK-92 cells are transfected with the hyperactive transposase SB100X vectorized as minicircle DNA (MC) along with a plasmid-encoded CAR transposon. Transfection efficiency is assessed 1 week later using flow cytometric analysis. Prior to functional testing, the cells expressing the transgene are enriched using magnetic-activated cell sorting and cultured for 1 more week. To evaluate antigen-specific activation, the engineered cells are co-cultured with Aspergillus fumigatus germ tubes for at least 6 h. Subsequently, the concentration of the secreted interferon-gamma (IFN-γ) is measured using an enzyme-linked immunosorbent assay.

Download full-text PDF

Source
http://dx.doi.org/10.3791/67424DOI Listing

Publication Analysis

Top Keywords

chimeric antigen
12
antigen receptor-natural
8
receptor-natural killer
8
targeting fungal
8
fungal infections
8
non-viral sleeping
8
sleeping beauty
8
beauty transposon
8
transposon system
8
car-nk cells
8

Similar Publications

Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective.

Int J Colorectal Dis

December 2024

Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.

Purpose: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

Background Aims: With novel therapies improving prognosis, the complications of multiple myeloma after multi-line treatment, particularly myelosuppression, have become a crucial determinant of long-term outcomes. Non-myeloablative allogeneic hematopoietic stem cell transplantation is a feasible option, but the transplant-related mortality rate remains high. Our study presents a relapsed/refractory multiple myeloma patient with a 9-year disease history.

View Article and Find Full Text PDF

Development of BCMA-Targeted Bispecific Natural Killer Cell Engagers for Multiple Myeloma Treatment.

Antibodies (Basel)

November 2024

Singapore Immunology Network, Agency for Science, Technology and Research, Immunos Building, 8A Biomedical Grove, Singapore 138648, Singapore.

Background: B-cell maturation antigen (BCMA)-targeted T cell-redirecting immunotherapies, including Chimeric Antigen Receptor (CAR) T-cell therapy and T-cell engagers have demonstrated remarkable success in treating relapsed/refractory (RR) multiple myeloma (MM), a malignancy of plasma cells. However, a significant challenge is the severe side effects associated with T-cell overactivation, leading to cytokine release syndrome and neurotoxicity in MM patients undergoing such therapies. Bispecific NK cell engagers (NKCEs) may offer a promising alternative by redirecting NK cell cytotoxic activity towards tumor cells without triggering cytokine release syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!