G-protein-coupled receptors (GPRs) are critical regulators of various biological behaviors, and their role in gastric cancer (GC) progression is gaining increasing attention. Among them, the immune regulatory mechanisms mediated by chemokine receptor 4 (CXCR4) remain insufficiently understood. This study aims to explore the immune regulatory functions of CXCR4 and the heterogeneity of the tumor microenvironment (TME) by examining GPR-related gene expression in GC. Through multi-omics approaches, including spatial transcriptomics and single-cell RNA sequencing, we investigated the oncogenic mechanisms of CXCR4, particularly its role in T cell immune exhaustion. In vitro experiments, including ELISA, PCR, CCK8 assays, cell scratch assays, and colony formation assays, were used to validate the role of CXCR4 in the migration and invasion of AGS and SNU-1 cell lines. CXCR4 silencing using siRNA further demonstrated its regulatory effects on these cellular processes. Our results revealed a strong correlation between elevated CXCR4 expression and increased exhaustion of regulatory T cells (Tregs) in the TME. Furthermore, heightened CXCR4 expression was linked to increased TME heterogeneity, driven by oxidative stress and activation of the NF-κB pathway, promoting immune evasion and tumor progression. Silencing CXCR4 significantly inhibited the invasive and proliferative abilities of AGS and SNU-1 cells, while also reducing the expression of pro-inflammatory cytokines IL-1β and interleukin-6, thus alleviating chronic inflammation and improving TME conditions. In conclusion, our comprehensive investigation highlights CXCR4 as a key mediator of TME dynamics and immune modulation in GC. Targeting CXCR4 presents a promising therapeutic strategy to slow tumor progression by reducing Tregs-mediated immune exhaustion and TME heterogeneity, positioning it as a novel therapeutic target in GC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.2130 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China.
Objectives: To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.
Methods: Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining.
Probl Radiac Med Radiobiol
December 2024
Nonprofit Organization «National Cancer Institute of Ministry of Health of Ukraine», 33/43 Julia Zdanovska Str., Kyiv, 03022, Ukraine.
The review is devoted to the use of a new class of radiopharmaceuticals (RPs) - chemokine receptor ligands - in oncological practice. The chemokine receptor CXCR4 is of particular interest as a molecular target in the diagnosis and treatment of malignant tumors, as it plays an important role in carcinogenesis. By interacting with the chemokine CCXL12, it activates cell signaling pathways that affect tumor cell proliferation, angiogenesis, metastasis growth, and apoptosis inhibition.
View Article and Find Full Text PDFHead Neck
December 2024
Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Head and neck squamous cell carcinoma (HNSCC) presents significant treatment challenges, particularly in cases unrelated to human papillomavirus (HPV). The chemokine receptor CXCR4, interacting with its ligand CXCL12, plays a crucial role in tumor proliferation, metastasis, and treatment resistance. This study explores the therapeutic potential of engineered monomeric and dimerized CXCL12 variants (CXCL12 and CXCL12, respectively) in HNSCC and evaluates potential additive effects when combined with radiation therapy.
View Article and Find Full Text PDFTheriogenology
December 2024
Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China. Electronic address:
The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!