Influence of counterion type on the scattering of a semiflexible polyelectrolyte.

Soft Matter

Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.

Published: November 2024

Understanding the influence of counterion and backbone solvation on the conformational and thermodynamic properties of polyelectrolytes in solution is one of the main open challenges in polyelectrolyte science. To address this problem, we study the scattering from semidilute solutions of a semiflexible polyelectrolyte, carboxymethyl cellulose (CMC) with alkaline and tetra-alkyl-ammonium (TAA) counterions in aqueous media using small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS), which allow us to probe concentration fluctuations of the polymer backbone and counterions. In SAXS, the calculated contrast arises primarily from the polymer backbone for both alkaline and TAA salts of CMC. In SANS, however, the contrast is dominated by the counterions for the TAA salts and the polymer backbone for the alkaline salts. Solutions are found to display a correlation peak in their scattering function, which at low concentrations is independent of counterion type. At moderate salt concentrations ( ≳ 0.1 M), the peak positions obtained from SANS and SAXS for the CMC salts with the TAA counterions differ. This divergence suggests a decoupling in the lengthscale over which the couterions and the polymer fluctuate. Upturns in the scattering intensity in the low- region signal the presence of long-ranged compositional inhomogeneities in the solutions. The strength of these decreases with increasing counterion-solvent interaction strength, as measured by the viscosity coefficient, and are strongest for the corresponding sodium salt of CMC.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00874jDOI Listing

Publication Analysis

Top Keywords

polymer backbone
12
influence counterion
8
counterion type
8
semiflexible polyelectrolyte
8
taa counterions
8
backbone alkaline
8
taa salts
8
scattering
6
type scattering
4
scattering semiflexible
4

Similar Publications

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications.

View Article and Find Full Text PDF

Polydiacetylene (PDA) Embedded Polymer-Based Network Structure for Biosensor Applications.

Gels

January 2025

Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.

View Article and Find Full Text PDF

To improve wound healing, advanced biofabrication techniques are proposed here to develop customized wound patches to release bioactive agents targeting cell function in a controlled manner. Three-dimensional (3D) bioprinted "smart" patches, based on methacrylated gellan gum (GGMA), loaded with tannic acid (TA) or L-ascorbic acid (AA) have been manufactured. To improve stability and degradation time, gellan gum (GG) was chemically modified by grafting methacrylic moieties on the polysaccharide backbone.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!