Sialylation catalysed by sialyltransferase 7A (SIAT7A) plays a role in the development of cardiac hypertrophy. However, the regulatory mechanisms upstream of SIAT7A in this context remain poorly elucidated. Previous study demonstrated that KLF4 activates the SIAT7A gene in ischemic myocardium by binding to its promoter region. Nevertheless, the potential involvement of KLF4 in regulating SIAT7A expression in Ang II-induced hypertrophic cardiomyocytes remains uncertain. This study seeks to deepen the underlying mechanisms of the KLF4 and SIAT7A interaction in the progression of Ang II-induced cardiac hypertrophy. The results showed a concurrent increase in SIAT7A and KLF4 levels in hypertrophic myocardium of essential hypertension patients and in hypertrophic cardiomyocytes stimulated by Ang II. In vitro experiments revealed that reducing KLF4 levels led to a decrease in both SIAT7A synthesis and Sialyl-Tn antigen expression, consequently inhibiting Ang II-induced cardiomyocyte hypertrophy. Intriguingly, reducing SIAT7A levels also resulted in decreased KLF4 expression and suppression cardiomyocyte hypertrophy. Consistent with this, elevating SIAT7A levels increased KLF4 expression and exacerbated cardiomyocyte hypertrophy in both in vivo and in vitro experiments. Additionally, a time-course analysis indicated that KLF4 expression preceded that of SIAT7A. Luciferase reporter assays further confirmed that modulating SIAT7A levels directly influenced the transcriptional activity of KLF4 in cardiomyocytes. In summary, KLF4 expression is upregulated in cardiomyocytes treated with Ang II, which subsequently induces the expression of SIAT7A. The elevated levels of SIAT7A, in turn, enhance the transcription of KLF4. These findings suggest a positive feedback loop between KLF4 and SIAT7A-Sialyl-Tn, ultimately promoting Ang II-induced cardiac hypertrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492152PMC
http://dx.doi.org/10.1111/jcmm.70144DOI Listing

Publication Analysis

Top Keywords

ang ii-induced
16
klf4 expression
16
siat7a
14
cardiac hypertrophy
12
klf4
12
cardiomyocyte hypertrophy
12
siat7a levels
12
klf4 siat7a
8
siat7a interaction
8
hypertrophic cardiomyocytes
8

Similar Publications

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

Redox Biol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:

NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.

View Article and Find Full Text PDF

The abdominal aortic aneurysm (AAA) is a severe and complex condition characterized by the pathological dilation of the abdominal aorta. Current therapeutic strategies are limited, with surgical repair being the most effective intervention due to the lack of medications that can slow aneurysmal expansion or prevent adverse events. In this study, an innovative nanoplatform, Mn-UiO-66-NH@HA, designed to repair vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM) is developed, thereby enhancing arterial wall integrity.

View Article and Find Full Text PDF

Cardiac remodeling encompasses structural alterations such as hypertrophy, fibrosis, and dilatation, alongside numerous cellular and molecular functional aberrations, constituting a pivotal process in the advancement of heart failure (HF). 4-Hydroxychalcone (4-HCH) is a class of naturally occurring compounds with variable phenolic structures, and has demonstrated the preventive efficacy in hyperaldosteronism, inflammation and renal injury. However, the role of 4-HCH in the regulation of cardiac remodeling remains uncertain.

View Article and Find Full Text PDF

Background: Cardiac fibrosis, a key contributor to heart failure, is driven by the activation of cardiac fibroblasts (CFs), often induced by angiotensin II (Ang II). Relaxin, a peptide hormone, has been reported to counteract fibrotic processes. This study aims to investigate the antifibrotic effects of relaxin on Ang II-induced CF activation, with a focus on the involvement of the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling pathway.

View Article and Find Full Text PDF

NMDA receptors in the prefrontal cortex (PFC) play a crucial role in cognitive functions. Previous research has indicated that angiotensin II (Ang II) affects learning and memory. This study aimed to examine how Ang II impacts NMDA receptor activity in layer V pyramidal cells of the rat PFC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!