The aim was to examine the acute effects of sprint exercise (SIT) on global gene expression in subcutaneous adipose tissue (AT) in healthy subjects, to enhance understanding of how SIT influences body weight regulation. The hypothesis was that SIT upregulates genes involved in mitochondrial function and fat metabolism. A total of 15 subjects performed three 30-s all-out sprints (SIT). Samples were collected from AT, skeletal muscle (SM) and blood (brachial artery and a subcutaneous AT vein) up to 15 min after the last sprint. Results showed that markers of oxidative stress, such as the purines hypoxanthine, xanthine and uric acid, increased markedly by SIT in both the artery and the AT vein. Purines also increased in AT and SM tissue. Differential gene expression analysis indicated a decrease in signaling for mitochondrial-related pathways, including oxidative phosphorylation, electron transport, ATP synthesis, and heat production by uncoupling proteins, as well as mitochondrial fatty acid beta oxidation. This downregulation of genes related to oxidative metabolism suggests an early-stage inhibition of the mitochondria, potentially as a protective mechanism against SIT-induced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492148PMC
http://dx.doi.org/10.14814/phy2.70088DOI Listing

Publication Analysis

Top Keywords

gene expression
12
adipose tissue
8
sprint exercise
8
oxidative stress
8
sit
5
decreased mitochondrial-related
4
mitochondrial-related gene
4
expression adipose
4
tissue acute
4
acute sprint
4

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!