Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reticular chemistry and pore engineering have garnered significant advancements in metal-organic frameworks and covalent organic frameworks, leveraging robust metal-coordination and covalent bonds. However, these achievements remain elusive in hydrogen-bonded organic frameworks, hindered by their inherent weakness in hydrogen bonding. Herein, we strategically manipulate the porosity of hydrogen-bonded frameworks through a grafting approach, culminating in the synthesis of two isomorphic HOFs, HOF-FJU-99 and HOF-FJU-100, with distinct pore environments. Remarkably, HOF-FJU-100, with its microporous architecture, not only showcases exceptional stability but also achieves unparalleled separation efficiency and ultrahigh selectivity for CH/CO mixtures (50/50, v/v) under ambient conditions. Its IAST selectivity value of 201 stands as a benchmark, towering over all previously reported HOFs. The pore of HOF-FJU-100 boasts an electrostatic potential highly favourable for CH adsorption, as evidenced by single crystal X-ray diffraction analysis revealing multiple hydrogen bonding interactions between CH molecules and the framework. In situ gas-carrier powder X-ray diffraction analysis underscores the adaptability of pore structure, dynamically adjusting its orientation in response to CH, thereby enabling a highly efficient and specific separation of CH/CO mixtures through specific adsorptive interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202414215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!