A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionipenct5jrongd6dqjbl1di9lp9u81ktj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Domain adaptive semantic segmentation by optimal transport. | LitMetric

Domain adaptive semantic segmentation by optimal transport.

Fundam Res

Department of Mathematics, Shanghai University, Shanghai 200444, China.

Published: September 2024

Scene segmentation is widely used in autonomous driving for environmental perception. Semantic scene segmentation has gained considerable attention owing to its rich semantic information. It assigns labels to the pixels in an image, thereby enabling automatic image labeling. Current approaches are based mainly on convolutional neural networks (CNN), however, they rely on numerous labels. Therefore, the use of a small amount of labeled data to achieve semantic segmentation has become increasingly important. In this study, we developed a domain adaptation framework based on optimal transport (OT) and an attention mechanism to address this issue. Specifically, we first generated the output space via a CNN owing to its superior of feature representation. Second, we utilized OT to achieve a more robust alignment of the source and target domains in the output space, where the OT plan defined a well attention mechanism to improve the adaptation of the model. In particular, the OT reduced the number of network parameters and made the network more interpretable. Third, to better describe the multiscale properties of the features, we constructed a multiscale segmentation network to perform domain adaptation. Finally, to verify the performance of the proposed method, we conducted an experiment to compare the proposed method with three benchmark and four SOTA methods using three scene datasets. The mean intersection-over-union (mIOU) was significantly improved, and visualization results under multiple domain adaptation scenarios also show that the proposed method performed better than semantic segmentation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489487PMC
http://dx.doi.org/10.1016/j.fmre.2023.06.006DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
12
domain adaptation
12
proposed method
12
optimal transport
8
scene segmentation
8
attention mechanism
8
output space
8
segmentation
6
semantic
5
domain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!